Skip to main content
Log in

Nuclear magnetic resonance in contemporary art: the case of “Moon Surface” by Turcato

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nuclear Magnetic Resonance (NMR) methodologies were applied to characterize the constitutive materials and the state of degradation of a contemporary painting. The investigation was mandatory to plan a suitable restoration.

Noninvasive, portable NMR allowed the detection of degraded regions of the painting based on the measurement of longitudinal relaxation time. A few samples were investigated by high resolution solid state NMR and NMR in solution, which allowed us to identify the polyurethane constituting the artefact, to investigate the microstructure in detail, and to assess that the degradation process mostly affected the ethylene units used to cap the polypropylene oxide polymeric chain. As a matter of fact, a shortening of longitudinal relaxation time was accompanied by a degradation of ethylene units.

The degradation of the inorganic loading was investigated by 27Al MAS, which evidenced the absence of penta-coordinated aluminum in degraded samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Quye, C. Williamson, Plastics: Collecting and Conserving (NMS Publishing, Edinburgh, 1999)

    Google Scholar 

  2. Y. Shashoua, Conservation of Plastics: Materials Science, Degradation and Preservation (Butterworth-Heinemann/Elsevier, Oxford, 2008)

    Google Scholar 

  3. O. Chiantore, Conservare L’arte Contemporanea. Problemi, Metodi, Materiali, Ricerche (Mondadori Electa, Milano, 2005)

    Google Scholar 

  4. J. Coddington, C. Mancusi-Ungaro, Conservation 17, 11 (2002)

    Google Scholar 

  5. T. Learner, Conservation perspectives: the CGI newsletter, 24, 4 (2009)

  6. A.E. Tonelli, NMR Spectroscopy and Polymeric Microstructure: the Conformational Connection (VCH, Weineheim, 1989)

    Google Scholar 

  7. V. Busico, R. Cipullo, G. Monaco, M. Vacatello, J.C. Chadwick, A.L. Segre, O. Sudmeijer, Macromolecules 32, 4173 (1999)

    Article  ADS  Google Scholar 

  8. V. Busico, R. Cipullo, G. Monaco, M. Vacatello, A.L. Segre, Macromolecules 30, 6251 (1997)

    Article  ADS  Google Scholar 

  9. F.A. Bovey, P.A. Mirau, NMR of Polymers (Academic Press, London, 1996)

    Google Scholar 

  10. C. De Rosa, F. Auriemma, G. Talarico, V. Busico, L. Caporaso, D. Capitani, Macromolecules 35, 1314 (2002)

    Article  ADS  Google Scholar 

  11. B. Blümich, S. Anferova, K. Kremer, S. Sharma, V. Herrmann, A. Segre, Spectroscopy 18, 18 (2003)

    Google Scholar 

  12. G. Metz, X. Wu, S.O. Smith, J. Magn. Reson. A 110, 219 (1994)

    Article  ADS  Google Scholar 

  13. R.L. Cook, H.H. Langford, R. Yamadagni, C.M. Preston, Anal. Chem. 68, 3979 (1996)

    Article  Google Scholar 

  14. B.J. Van Rossum, H. Förster, H.J.M. De Groot, J. Magn. Reson. 124, 516 (1997)

    Article  ADS  Google Scholar 

  15. S. Braun, H.O. Kalinowski, S. Berger, 150 and More Basic NMR Experiment, 2nd edn. (Wiley/VCH, Weineheim, 1998)

    Google Scholar 

  16. E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965)

    Article  ADS  Google Scholar 

  17. K.F. Morris, C.S. Johnson, J. Am. Chem. Soc. 114, 3139 (1992)

    Article  Google Scholar 

  18. K.F. Morris, P. Stilbs, C.S. Johnson, Anal. Chem. 66, 211 (1994)

    Article  Google Scholar 

  19. B. Blümich, J. Perlo, F. Casanova, Prog. Nucl. Magn. Reson. Spectrosc. 52, 192 (2008)

    Article  Google Scholar 

  20. S. Sharma, F. Casanova, W. Wache, A.L. Segre, B. Blümich, Magn. Reson. Imaging 21, 249 (2003)

    Article  Google Scholar 

  21. T.C. Farrar, E.D. Becker, Pulse and Fourier Transform NMR (Academic Press, New York, 1971)

    Google Scholar 

  22. H.Y. Carr, E.M. Purcell, Phys. Rev. 94, 630 (1954)

    Article  ADS  Google Scholar 

  23. S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)

    Article  ADS  Google Scholar 

  24. N. Proietti, F. Presciutti, V. Di Tullio, B. Doherty, A.M. Marinelli, B. Provinciali, N. Macchioni, D. Capitani, C. Miliani, Anal. Bioanal. Chem. 399, 3117 (2011)

    Article  Google Scholar 

  25. D. Capitani, M.C. Emanuele, A.L. Segre, C. Fanelli, A.A. Fabbri, D. Attanasio, B. Focher, G. Capretti, Nord. Pulp Pap. Res. 13, 95 (1998)

    Article  Google Scholar 

  26. N. Proietti, D. Capitani, E. Pedemonte, B. Blümich, A.L. Segre, J. Magn. Reson. 170, 113 (2004)

    Article  ADS  Google Scholar 

  27. B. Blümich, S. Anferova, S. Sharma, A.L. Segre, C. Federici, J. Magn. Reson. 161, 204 (2003)

    Article  ADS  Google Scholar 

  28. U. Tomati, M. Belardinelli, E. Galli, V. Iori, D. Capitani, L. Mannina, S. Viel, A. Segre, Carbohydr. Res. 339, 1129 (2004)

    Article  Google Scholar 

  29. G.S. Kapur, E.J. Cabrata, S. Berger, Tetrahedron Lett. 41, 7181 (2000)

    Article  Google Scholar 

  30. S. Viel, L. Mannina, A.L. Segre, Tetrahedron Lett. 43, 2515 (2002)

    Article  Google Scholar 

  31. K.F. Morris, C.S.J. Johnson, J. Am. Chem. Soc. 115, 4291 (1993)

    Article  Google Scholar 

  32. S. Viel, D. Capitani, L. Mannina, A.L. Segre, Biomacromolecules 4, 1843 (2003)

    Article  Google Scholar 

  33. V. Crescenzi, A. Francescangeli, A. Taglienti, D. Capitani, L. Mannina, Biomacromolecules 4, 1045 (2003)

    Article  Google Scholar 

  34. M.H. Chisholm, D. Navarro-Llobet, Macromolecules 35, 2389 (2002)

    Article  ADS  Google Scholar 

  35. F. Heatley, Y.Z. Luo, J.F. Ding, R.H. Mobbs, C. Booth, Macromolecules 21, 2713 (1988)

    Article  ADS  Google Scholar 

  36. P.N. Lan, S. Corneillie, E. Schacht, M. Davies, A. Shard, Biomaterials 17, 2273 (1996)

    Article  Google Scholar 

  37. J. Rocha, J.M. Adams, J. Klinowski, J. Solid State Chem. 89, 260 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Maria Vittoria Marini Clarelli, conservator, and Luciana Tozzi and Barbara Cisternino, restorers to the Galleria Nazionale di Arte Moderna e Contemporanea of Rome for their kind assistance and collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatella Capitani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Proietti, N., Di Tullio, V., Capitani, D. et al. Nuclear magnetic resonance in contemporary art: the case of “Moon Surface” by Turcato. Appl. Phys. A 113, 1009–1017 (2013). https://doi.org/10.1007/s00339-013-7729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7729-9

Keywords

Navigation