Applied Physics A

, Volume 113, Issue 4, pp 989–998 | Cite as

A multi-analytical study of the fifteenth century mural paintings of the Batalha Monastery (Portugal) in view of their conservation

  • S. Valadas
  • A. Candeias
  • C. Dias
  • N. Schiavon
  • M. Cotovio
  • J. Pestana
  • M. Gil
  • J. Mirão


The systematic characterization of the painting’s palette and technique applied on the execution of the mural paintings of the Batalha Monastery (Batalha, Leiria, Portugal) is presented. These are the oldest mural paintings known in Portugal (apart from Roman frescoes) and represent the beginning of an artistic Portuguese tradition that continues until the nineteenth century. The aim of the study was to identify for the first time by adopting a multi-analytical physico-chemical approach of the pigments, binder, and alteration products (white veils, crusts, and pigment alteration) of these unique works of arts in order not only to better understand the painting technique, but also to support a conservation-restoration intervention that took place from April to August 2010.

Micro-sampling of paint layers was performed on representative areas of the paintings. The characterization of the pigments and binders was carried out by microscopy and microanalysis of cross sections using optical microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM-EDS), micro-FTIR, and micro X-ray diffraction.

The combined analysis of the paintings allowed the identification of the painting’s palette: Vermillion (HgS) and red ochre for the reds, yellow ochres for the yellows, green earths and malachite for the greens, azurite for the blues, and carbon for the blacks. The use of the pigment is dependent of the motive painted while the most expensive materials were used in the most important iconographic motives.

Alteration of malachite was identified in darkened layers in green areas of the paintings. White veil areas on the surface of the paintings were identified as calcite from precipitation/dissolution processes due to water run-off on the sacristy dome ceiling and walls.


Malachite Green Malachite Paint Layer Cinnabar Green Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge the Fundação para a Ciência e Tecnologia (Grant SFRH/BD/66068/2009) and the EEA Grants for financial support. J.M. De Oliveira, General Directorate for Cultural Heritage is also gratefully acknowledged for helpful discussions and practical support.


  1. 1.
    M. Gil, M.L. Carvalho, A. Seruya, I. Ribeiro, I. Queralt, A.E. Candeias, J.A.P. Mirão, Appl. Phys. A 90, 49–54 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    J. Plesters, Stud. Conserv. 2, 110–157 (1956) CrossRefGoogle Scholar
  3. 3.
    R. Gettens, E.W. Fitz Hugh, Stud. Conserv. 11, 54–61 (1966) CrossRefGoogle Scholar
  4. 4.
    N. Schiavon, A.E. Candeias, T. Ferreira, M. Da Conceicao Lopes, A. Carneiro, T. Calligaro, J. Mirao, Archaeometry 54(6), 974–996 (2012) CrossRefGoogle Scholar
  5. 5.
    A. Santos Silva, T. Cruz, M.J. Paiva, A.E. Candeias, P. Adriano, N. Schiavon, J.A.P. Mirao, Environ. Earth Sci. 63, 1641–1650 (2011) CrossRefGoogle Scholar
  6. 6.
    N. Schiavon, G.A. Mazzocchin, Open Mineral. J. 3, 32–39 (2009) Google Scholar
  7. 7.
    N. Schiavon, in Stone Cleaning and the Nature, Soiling and Decay Mechanisms of Stone, ed. by R.G.M. Webster (Donhead, London, 1992), pp. 258–267 Google Scholar
  8. 8.
    N. Schiavon, in Conservation of Stone and Other Materials, vol. 167, ed. by M.J. Thiel (Spon, London, 1993), pp. 271–278 Google Scholar
  9. 9.
    N. Schiavon, G. Chiavari, G. Schiavon, D. Fabbri, Sci. Total Environ. 167, 87–101 (1995) CrossRefGoogle Scholar
  10. 10.
    N. Schiavon, L.P. Zhou, Environ. Sci. Technol. 30, 3624–3629 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    N. Schiavon, Geol. Soc. London Spec. Publ. 205, 195–206 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    N. Schiavon, G. Chiavari, D. Fabbri, Environ. Geol. 46, 448–455 (2004) CrossRefGoogle Scholar
  13. 13.
    N. Schiavon, Environ. Geol. 52(2), 399–407 (2007) CrossRefGoogle Scholar
  14. 14.
    N. Schiavon, in Conservation Science for the Cultural Heritage: Applications of Instrumental Analysis, ed. by E.A. Varella (Springer, Berlin, 2013), pp. 249–257 Google Scholar
  15. 15.
    N. Schiavon, G.A. Mazzocchin, F. Baudo, Environ. Geol. 56(2–3), 767–776 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Ingo, E. Angelini, G. Bultrini, T. De Caro, L. Pandolfi, A. Mezzi, Surf. Interface Anal. 34, 328–360 (2002) CrossRefGoogle Scholar
  17. 17.
    G.M. Ingo, E. Angelini, T. De Caro, G. Bultrini, I. Calliari, Appl. Phys. A, Mater. Sci. Process. 79, 199–203 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    G.M. Ingo, E. Angelini, T. De Caro, G. Bultrini, Appl. Phys. A, Mater. Sci. Process. 79, 171–179 (2004) ADSCrossRefGoogle Scholar
  19. 19.
    N. Schiavon, A. Celauro, M. Manso, A. Brunetti, F. Susanna. Appl. Phys. Part A (2013). doi: 10.1007/s00339-013-7747-7 Google Scholar
  20. 20.
    A. Roy, Artist’s Pigments—A Handbook of Their History and Characteristics, vol. 2 (Oxford University Press, London, 1994) Google Scholar
  21. 21.
    R.L. Feller, Artist’s Pigments—A Handbook of Their History and Characteristics, vol. 1 (Oxford University Press, London, 1986) Google Scholar
  22. 22.
    V.C. Farmer, J.D. Russell, The infrared spectra of layer silicates. Spectrochim. Acta 20, 1149–1173 (1964) ADSCrossRefGoogle Scholar
  23. 23.
    F. Ospitali, D. Bersani, G. Lonardo, P.P. Lottici, J. Raman Spectrosc. 39, 1066–1073 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    R.J. Gettens, E.W. FitzHugh, Stud. Conserv. 19, 2–23 (1974) CrossRefGoogle Scholar
  25. 25.
    M. Bacci, in Modern Analytical Methods in Art and Archaeology, vol. 155 (Wiley, New York, 2000) Google Scholar
  26. 26.
    L.A. Zycherman, Ars Orient. 13, 59–92 (1982) Google Scholar
  27. 27.
    M. Gil, M.L. Carvalho, S. Longelin, I. Ribeiro, S. Valadas, J. Mirão, A. Candeias. Appl. Spectrosc. 65(7), 782–789 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    S. Bruni, F. Cariati, F. Casadio, L. Toniolo, Vib. Spectrosc. 20, 15–25 (1999) CrossRefGoogle Scholar
  29. 29.
    A. Lluveras, S. Boularand, A. Andreotti, M. Vendrell-Saz, Appl. Phys. A, Mater. Sci. Process. 99, 363–375 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    K. Castro, A. Sarmiento, I. Martínez-Arkarazo, J.M. Madariaga, L.A. Fernández, Anal. Chem. 80, 4103–4110 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • S. Valadas
    • 1
    • 2
  • A. Candeias
    • 1
    • 2
    • 3
  • C. Dias
    • 1
    • 2
  • N. Schiavon
    • 1
    • 6
  • M. Cotovio
    • 4
  • J. Pestana
    • 4
  • M. Gil
    • 1
  • J. Mirão
    • 1
    • 5
  1. 1.HERCULES LaboratoryÉvora UniversityÉvoraPortugal
  2. 2.Evora Chemistry Centre and Chemistry DepartmentEvora UniversityÉvoraPortugal
  3. 3.Jose de Figueiredo LaboratoryDirectorate General for Cultural HeritageLisbonPortugal
  4. 4.Mural da HistoriaConservation, RestorationLisbonPortugal
  5. 5.Evora Geophysics Centre and Geosciences DepartmentÉvora UniversityÉvoraPortugal
  6. 6.Evora Geophysics CentreÉvora UniversityÉvoraPortugal

Personalised recommendations