Skip to main content
Log in

Micro-chemical and metallurgical study of Samnite bronze belts from ancient Abruzzo (central Italy, VIII–IV BC)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Samnite bronze belts and the chest disk cuirasses (VIII–IV BC) are the distinctive defensive weapons of the Samnite warriors having likely also a symbolic relevance. These artefacts were mainly found during the archaeological excavations of warriors’ graves from ancient Abruzzo (central Italy). Their chemical composition, metallurgical features and corrosion products formed during the long-term burial have been studied by means of the combined use of analytical techniques such as optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray micro-analysis (SEM–EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The micro-chemical and structural results show that the bronze belts have often been produced by using unusual high-tin bronze alloys achieving a silver-like appearance and by performing tailored cycles of thermal treatments under reducing conditions and hot mechanical working aimed to shape the high-tin alloys in the form of a thin bronze sheet. Furthermore, the investigation has shown that the main alloying elements have been transformed during the burial into mineral species giving rise to the formation of stratified structures constituted by different mineral phases such as tin oxides, cuprous oxide (Cu2O) and copper carbonates (azurite (Cu3(CO3)2(OH)2 and malachite (CuCO3Cu(OH)2)) as well as dangerous chlorine-based compounds such as nantokite (CuCl) and atacamite (Cu2(OH)3Cl) polymorphs. This information evidences the strict interaction of the alloying elements with the soil components as well as the occurrence of the copper cyclic corrosion as a post-burial degradation phenomenon. The present study confirms that the combined micro-chemical and micro-structural investigation techniques such as SEM–EDS, XPS, XRD and OM can be successfully used to investigate the technological production processes of the ancient artefacts and to achieve the detailed micro-chemical and structural description of the corrosion products useful for the identification of degradation agents and mechanisms and, thereafter, to propose a reliable tailored strategy for the conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.T. Salmon, Samnium and the Samnites (Cambridge University Press, Cambridge, 1967)

    Google Scholar 

  2. G. Tagliamonte, I Sanniti (Longanesi, Milano, 1996)

    Google Scholar 

  3. M. Suano, Sabellian–Samnite Bronze Belts in the British Museum. Occas. Pap. - Br. Mus., vol. 57 (British Museum Press, London, 1986)

    Google Scholar 

  4. M. Romito, I Cinturoni Sannitici (Electa, Naples, 1995). Book series published by the Direzione dei Musei Provinciali e del Centro ‘Nicola Cilento’ per l’Archeologia Medioevale dell’Università degli Studi di Salerno. ISBN 8843548271

    Google Scholar 

  5. G.M. Ingo, E. Angelini, T. de Caro, G. Bultrini, Appl. Phys. A, Mater. Sci. Process. 79, 171 (2004)

    Article  ADS  Google Scholar 

  6. D.A. Scott, in Metallography and Microstructure of Ancient and Historic Metals (The Getty Conservation Institute, Malibou, 1991), p. 25

    Google Scholar 

  7. D.A. Scott, Copper and Bronze in Art, Corrosion, Colorants, Conservation (The Getty Conservation Institute, Malibou, 2002)

    Google Scholar 

  8. L. Robbiola, J.-M. Blengino, C. Fiaud, Corros. Sci. 40, 2083 (1998)

    Article  Google Scholar 

  9. D.A. Scott, Stud. Conserv. 30, 49 (1985)

    Article  Google Scholar 

  10. D.A. Scott, J. Am. Inst. Conserv. 29, 193 (1990)

    Article  Google Scholar 

  11. C.G. Fink, in The Corrosion Handbook, ed. by H.H. Uhlig (Wiley, New York, 1948)

    Google Scholar 

  12. F. Schweitzer, in Proc. Symp. Organised by the Paul Getty Museum, ed. by D.A. Scott, J. Podany, B.B. Considine (J. Paul Getty Museum, Malibou, 1994), pp. 1–20

    Google Scholar 

  13. G. Padeletti, G.M. Ingo, A. Bouquillon, S. Pages-Camagna, M. Aucouturier, S. Rohers, P. Fermo, Appl. Phys. A, Mater. Sci. Process. 83, 475 (2006)

    Article  ADS  Google Scholar 

  14. G.M. Ingo, S. Kaciulis, A. Mezzi, T. Valente, F. Casadei, G. Gusmano, Electrochim. Acta 50, 4531 (2005)

    Article  Google Scholar 

  15. G. Cossu, G.M. Ingo, G. Mattogno, G. Padeletti, G.M. Proietti, Appl. Surf. Sci. 56–58, 81 (1992)

    Article  Google Scholar 

  16. G.M. Ingo, G. Padeletti, Surf. Interface Anal. 21, 450 (1994)

    Article  Google Scholar 

  17. G.M. Ingo, G. Marletta, Nucl. Instrum. Methods Phys. Res. B 116, 440 (1996)

    Article  ADS  Google Scholar 

  18. G.M. Ingo, E. Angelini, T. de Caro, G. Bultrini, I. Calliari, Appl. Phys. A, Mater. Sci. Process. 79, 199 (2004)

    Article  ADS  Google Scholar 

  19. G.M. Ingo, T. de Caro, C. Riccucci, S. Khosroff, Appl. Phys. A, Mater. Sci. Process. 83, 581 (2006)

    Article  ADS  Google Scholar 

  20. P.T. Craddock, J. Archaeol. Sci. 3, 93 (1976)

    Article  Google Scholar 

  21. P.T. Craddock, J. Archaeol. Sci. 4, 103 (1977)

    Article  Google Scholar 

  22. P.T. Craddock, J. Archaeol. Sci. 5, 1 (1978)

    Article  Google Scholar 

  23. A. Butts, Copper, the Science and Technology of the Metal, Its Alloys and Compounds. A.C.S. Monogr. Ser., vol. 12 (Reinhold, New York, 1954)

    Google Scholar 

  24. M.B. McNeil, B.J. Little, J. Am. Inst. Conserv. 10, 186 (1999)

    Google Scholar 

  25. N.D. Meeks, Archaeometry 28, 133 (1996)

    Article  Google Scholar 

  26. G.M. Ingo, L. Giorgi, N. Zacchetti, N. Azzerri, Corros. Sci. 33, 361 (1992)

    Article  Google Scholar 

  27. E. Paparazzo, G. Fierro, G.M. Ingo, N. Zacchetti, Surf. Interface Anal. 12, 438 (1988)

    Article  Google Scholar 

  28. R. Schlesinger, H. Klewe-Nebenius, M. Bruns, Surf. Interface Anal. 30, 135 (2000)

    Article  Google Scholar 

  29. V. Hayez, A. Franquet, A. Hubin, H. Terryn, Surf. Interface Anal. 36, 876 (2004)

    Article  Google Scholar 

  30. D. Chadwick, T. Hasemi, J. Electron Spectrosc. Relat. Phenom. 10, 79 (1997)

    Article  Google Scholar 

  31. R.F. Roberts, J. Electron Spectrosc. Relat. Phenom. 4, 273 (1974)

    Article  Google Scholar 

  32. C.D. Wagner, A. Joshi, J. Electron Spectrosc. Relat. Phenom. 47, 283 (1988)

    Article  Google Scholar 

  33. C.D. Wagner, Auger chemical shifts and the Auger parameter, in Practical Surface Analysis by Auger and XPS, ed. by D. Briggs, M.P. Seah, 2nd edn. (Wiley, New York, 1990). Appendix 4

    Google Scholar 

  34. P. Lucey, Br. Corros. J. 7, 36 (1972)

    Article  Google Scholar 

  35. W.A. Oddy, N.D. Meeks, in Proc. Conf. Science and Technology in the Service of Conservation, Washington, 3–9 September 1982, p. 119

    Google Scholar 

Download references

Acknowledgements

The activities have been performed in the framework of the bilateral project between Italy (Soprintendenza per i Beni Archeologici dell’Abruzzo, Ministero per i Beni e le Attività Culturali) and Confederation Helvetique for the protection of cultural heritage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Riccucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riccucci, C., Ingo, G.M., Faustoferri, A. et al. Micro-chemical and metallurgical study of Samnite bronze belts from ancient Abruzzo (central Italy, VIII–IV BC). Appl. Phys. A 113, 959–970 (2013). https://doi.org/10.1007/s00339-013-7723-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7723-2

Keywords

Navigation