Skip to main content

Advertisement

Log in

Triangle defects in bowtie nanoantennas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The surface plasmon resonance (SPR) modes and near field gap enhancement of bowtie nanoantennas with triangle void defects are studied numerically. According to the location of the defects, we classify them into four categories: inner, edge, base and vertex defects. It is concluded that inner and base defects have little impact on both SPR modes and gap enhancement while edge and vertex defects which lead to mode splitting have great impact on the gap enhancement with symmetry breaking. Specifically, the size and location of edge defects have a remarkable effect on the resonant modes, especially for the low-energy resonant mode. When the edge defect gets close to the gap, the gap enhancement increases even above that of bowties with no defects. These properties are instructive to the evaluation of the fabrication of bowtie nanoantennas. And, by careful control of the defect location, we can get useful resonant modes and increase the gap enhancement for applications such as broadband light harvesting, ultra-fast wavelength-sensitive photodetection and fluorescent detection for two or more targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Muhlschlegel, H.J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Science 308, 1607 (2005)

    Article  ADS  Google Scholar 

  2. E. Cubukcu, E.A. Kort, K.B. Crozier, Appl. Phys. Lett. 89, 093120 (2006)

    Article  ADS  Google Scholar 

  3. P. Ghenuche, S. Cherukulappurath, T.H. Taminiau, N.F. Hulst, R. Quidant, Phys. Rev. Lett. 101, 116805 (2008)

    Article  ADS  Google Scholar 

  4. S. Pillai, K.R. Catchpole, T. Trupke, J. Appl. Phys. 101, 093105 (2007)

    Article  ADS  Google Scholar 

  5. J.N. Anker, W.P. Hall, O. Lyandres, Nat. Mater. 7, 442 (2008)

    Article  ADS  Google Scholar 

  6. W. Ding, R. Bachelot, R.E. de Lamaestre, D. Macias, A.L. Baudrion, P. Royer, Opt. Express 17, 21228 (2009)

    Article  Google Scholar 

  7. P. Biagioni, M. Savoini, J.S. Huang, L. Duo, M. Finazzi, B. Hecht, Phys. Rev. B 80, 153409 (2009)

    Article  ADS  Google Scholar 

  8. H. Fischer, O.J.F. Martin, Opt. Express 16, 9144 (2008)

    Article  ADS  Google Scholar 

  9. C. Genet, T.W. Ebbesen, Nature 445, 39 (2007)

    Article  ADS  Google Scholar 

  10. B. Lee, I.M. Lee, S. Kim, D.H. Oh, L. Hesselink, J. Mod. Opt. 57, 1479 (2010)

    Article  ADS  Google Scholar 

  11. L. Cao, J.S. Park, P. Fan, M. Brongersma, Nano Lett. 10, 1229 (2010)

    Article  ADS  Google Scholar 

  12. S.D. Liu, Z. Yang, R.P. Liu, X.Y. Li, J. Phys. Chem. C 115, 24469 (2011)

    Article  Google Scholar 

  13. L. Novotny, S.J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2006)

    Article  ADS  Google Scholar 

  14. J.Y. Suh, C.H. Kim, W. Zhou, M.D. Huntington, D.T. Co, M.R. Wasielewski, T.W. Odom, Nano Lett. 12, 5769 (2012)

    Article  ADS  Google Scholar 

  15. K. Aydin, V.E. Ferry, R.M. Briggs, H.A. Atwater, Nat. Commun. 2, 517 (2011)

    Article  ADS  Google Scholar 

  16. P. Spinelli, M.A. Verschuuren, A. Polman, Nat. Commun. 3, 692 (2012)

    Article  ADS  Google Scholar 

  17. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, Nature 444, 740 (2006)

    Article  ADS  Google Scholar 

  18. L. Wang, S.M. Uppuluri, E.X. Jin, X.F. Xu, Nano Lett. 10, 2097 (2006)

    Google Scholar 

  19. L. Wang, X.F. Xu, Appl. Phys. Lett. 90, 261105 (2007)

    Article  ADS  Google Scholar 

  20. J.P. Litz, J.P. Camden, D.J. Masiello, J. Phys. Chem. Lett. 2, 1695 (2011)

    Article  Google Scholar 

  21. A. Kinkhabwala, Z.F. Yu, S.H. Fan, Y. Avlasevich, K. Mullen, W.E. Moerner, Nat. Photonics 3, 654 (2009)

    Article  ADS  Google Scholar 

  22. A. Sundaramurthy, K. Crozier, G. Kino, Phys. Rev. B 72, 165409 (2005)

    Article  ADS  Google Scholar 

  23. W. Ding, R. Bachelot, S. Kostcheev, P. Royer, R.E. de Lamaestre, J. Appl. Phys. 108, 124314 (2010)

    Article  ADS  Google Scholar 

  24. H.G. Duan, A.I.F. Domínguez, M. Bosman, S.A. Maier, J.K.W. Yang, Nano Lett. 12, 1683 (2012)

    Article  ADS  Google Scholar 

  25. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  26. H. Wang, Y.P. Wu, B. Lassiter, C.L. Nehl, J.H. Hafner, P. Nordlander, N.J. Halas, Proc. Natl. Acad. Sci. USA 103, 10856 (2006)

    Article  ADS  Google Scholar 

  27. Z. Zhang, A.W. Bargioni, S.W. Wu, S. Dhuey, S. Cabrini, P.J. Schuck, Nano Lett. 9, 4505 (2009)

    Article  ADS  Google Scholar 

  28. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  29. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2010)

    Article  ADS  Google Scholar 

  30. Y.H. Fu, J.B. Zhang, Y.F. Yu, B. Luk’yanchuk, ACS Nano 6, 5130 (2012)

    Article  Google Scholar 

  31. Y. Francescato, V. Giannini, S.A. Maier, ACS Nano 6, 1830 (2012)

    Article  Google Scholar 

  32. Y.H. Cui, J.H. Zhou, V.A. Tamma, W. Park, ACS Nano 6, 2385 (2012)

    Article  Google Scholar 

  33. COMSOL Multiphysics User’s Guide (2005)

  34. K.L. Shuford, M.A. Ratner, G.C. Schatz, J. Chem. Phys. 123, 114713 (2005)

    Article  ADS  Google Scholar 

  35. R.C. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng, Science 294, 1901 (2001)

    Article  ADS  Google Scholar 

  36. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Startup Fund from Peking University Shenzhen Graduate School. The authors would like to acknowledge the valuable discussions with Lei Li and Guangyao Su in the same group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., He, K. & Zhang, Z. Triangle defects in bowtie nanoantennas. Appl. Phys. A 112, 591–596 (2013). https://doi.org/10.1007/s00339-013-7708-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7708-1

Keywords

Navigation