Skip to main content
Log in

Effect of cation and anion defects on the resistive switching polarity of ZnO x thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we achieve the resistive switching (RS) polarity from unipolar to bipolar in a simple Al/ZnO x /Al structure by moderating the oxygen content in the ZnO sputtering process. In a pure Ar sputtering, Al/ZnO x /Al shows unipolar behavior, as oxygen partial pressure increases, the RS polarity changes to bipolar, and the switch current decreases by about five orders of magnitude. The current transport properties of unipolar device show ohmic behavior under both high resistance (HRS) and low resistance states (LRS), but the bipolar device shows Schottky barrier modulated current transport properties. We study the defect types in the unipolar and bipolar devices through photoluminescence (PL) spectra. The PL results show that the interstitial zinc (Zni) and interstitial oxygen (Oi) are dominant in unipolar and bipolar devices, respectively. We attribute this phenomenon to Zni and Oi playing important role in unipolar (URS) and bipolar resistive switching (BRS), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RS:

Resistive switching

URS:

Unipolar resistive switching

BRS:

Bipolar resistive switching

HRS:

High resistance state

LRS:

Low resistance state

Zni :

Interstitial zinc

Oi :

Interstitial oxygen

VO :

Oxygen vacancy

V Zn :

Zn vacancy

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

PL:

Photoluminescence

SCLC:

Space charge limited conduction

SCCM:

Standard-state cubic centimeter per minute

References

  1. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  2. M.-J. Lee, S. Han, S.H. Jeon, B.H. Park, B.S. Kang, S.-E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.-K. Yoo, D.H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, Y. Park, Nano Lett. 9, 1476 (2009)

    Article  ADS  Google Scholar 

  3. J. Sullaphen, K. Bogle, X. Cheng, J.M. Gregg, N. Valanoor, Appl. Phys. Lett. 100, 203155 (2012)

    Article  ADS  Google Scholar 

  4. J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  5. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  6. Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)

    Article  ADS  Google Scholar 

  7. W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, M.J. Tsai, Appl. Phys. Lett. 92, 022110 (2008)

    Article  ADS  Google Scholar 

  8. H.K. Yoo, S.B. Lee, J.S. Lee, S.H. Chang, M.J. Yoon, Y.S. Kim, B.S. Kang, M.J. Lee, C.J. Kim, B. Kahng, T.W. Noh, Appl. Phys. Lett. 98, 183507 (2011)

    Article  ADS  Google Scholar 

  9. C. Chen, C. Song, J. Yang, F. Zeng, F. Pan, Appl. Phys. Lett. 100, 253509 (2012)

    Article  ADS  Google Scholar 

  10. L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, C. Muller, J. Appl. Phys. 107, 024512 (2010)

    Article  ADS  Google Scholar 

  11. S. Lee, H. Kim, J. Park, K. Yong, J. Appl. Phys. 108, 076101 (2010)

    Article  ADS  Google Scholar 

  12. C. Chen, F. Pan, Z.S. Wang, J. Yang, F. Zeng, J. Appl. Phys. 111, 013702 (2012)

    Article  ADS  Google Scholar 

  13. S.B. Lee, J.S. Lee, S.H. Chang, H.K. Yoo, B.S. Kang, B. Kahng, M.J. Lee, C.J. Kim, T.W. Noh, Appl. Phys. Lett. 98, 033502 (2011)

    Article  ADS  Google Scholar 

  14. X. Sun, G. Li, X. Zhang, L. Ding, W. Zhang, J. Phys. D, Appl. Phys. 44, 125404 (2011)

    Article  ADS  Google Scholar 

  15. D.S. Jeong, H. Schroeder, R. Waser, Electrochem. Solid-State Lett. 10, G51 (2007)

    Article  Google Scholar 

  16. L. Goux, Y.Y. Chen, L. Pantisano, X.P. Wang, G. Groeseneken, M. Jurczak, D.J. Wouters, Electrochem. Solid-State Lett. 13, G54 (2010)

    Article  Google Scholar 

  17. K. Oka, T. Yanagida, K. Nagashima, M. Kanai, B. Xu, B.H. Park, H. Katayama-Yoshida, T. Kawai, J. Am. Chem. Soc. 134, 2535 (2012)

    Article  Google Scholar 

  18. A. Janotti, C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007)

    Article  ADS  Google Scholar 

  19. Q. Wang, D.S. Shang, Z.H. Wu, L.D. Chen, X.M. Li, Appl. Phys. A, Mater. Sci. Process. 86, 357 (2006)

    Article  ADS  Google Scholar 

  20. D.S. Shang, Q. Wang, L.D. Chen, R. Dong, X.M. Li, W.Q. Zhang, Phys. Rev. B 73, 245427 (2006)

    Article  ADS  Google Scholar 

  21. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contact (Oxford University Press, Oxford, 1988)

    Google Scholar 

  22. R.L. David, CRC Handbook of Chemistry and Physics, 77th edn. (CRC, Boca Raton, 1996–1997)

    Google Scholar 

  23. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Appl. Phys. Lett. 97, 042109 (2010)

    Article  ADS  Google Scholar 

  24. R. Yang, X.M. Li, W.D. Yu, X.D. Gao, D.S. Shang, X.J. Liu, X. Cao, Q. Wang, L.D. Chen, Appl. Phys. Lett. 95, 072105 (2009)

    Article  ADS  Google Scholar 

  25. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)

    Article  ADS  Google Scholar 

  26. H. Zeng, Z. Gang, W. Cai, P. Liu, J. Appl. Phys. 102, 104307 (2007)

    Article  ADS  Google Scholar 

  27. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurišić, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, W.K. Chan, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. B 110, 20865 (2006)

    Article  Google Scholar 

  28. Z. Fu, B. Lin, G. Liao, Z. Wu, J. Cryst. Growth 193, 316 (1998)

    Article  ADS  Google Scholar 

  29. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  ADS  Google Scholar 

  30. K.K. Kim, J.H. Song, H.J. Jung, W.K. Choi, S.J. Park, J.Y. Lee, J. Vac. Sci. Technol. A 18, 2864 (2000)

    Article  ADS  Google Scholar 

  31. S.-H. Jeong, B.-S. Kim, B.-T. Lee, Appl. Phys. Lett. 82, 2625 (2003)

    Article  ADS  Google Scholar 

  32. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 199, 286 (2003)

    Article  ADS  Google Scholar 

  33. M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.B. Kim, C.J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.K. Yoo, K. Kim, Nat. Mater. 10, 625 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61076042 and 60607006); the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205), and National Key Technology RD Program of China (Grant No. 2009BAH49B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimou Xu.

Additional information

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Xu, Z., Liu, B. et al. Effect of cation and anion defects on the resistive switching polarity of ZnO x thin films. Appl. Phys. A 114, 847–852 (2014). https://doi.org/10.1007/s00339-013-7704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7704-5

Keywords

Navigation