Skip to main content
Log in

Electrostatic assembly of CdTe quantum dots with different charged ligands into TiO2 porous film for solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have demonstrated an approach for the electrostatic assembly of CdTe quantum dots (QDs) with different charged ligands as sensitizers, achieving high coverage and good dispersion in TiO2 porous films. The CdTe QD-sensitized TiO2 porous films were subjected to thermal annealing in a high vacuum chamber to remove the ligand linker, resulting in the formation of direct heterojunctions between the bare CdTe QDs and TiO2 for a favorable charge transfer. The as-received CdTe QD-sensitized TiO2 porous films were employed as photoanodes for quantum dot-sensitized solar cells (QSSCs), and the photocurrent density reached as high as 4.69 mA/cm2 under a standard illumination condition of simulated AM 1.5G (100 mW/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  ADS  Google Scholar 

  2. A.J. Nozik, Quantum dot solar cells. Physica E, Low-Dimens. Syst. Nanostruct. 14, 115–120 (2002)

    Article  ADS  Google Scholar 

  3. P.V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737–18753 (2008)

    Article  Google Scholar 

  4. R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem. 98, 3183–3188 (1994)

    Article  Google Scholar 

  5. M.T. Trinh, A.J. Houtepen, J.M. Schins et al., In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008)

    Article  ADS  Google Scholar 

  6. V.I. Klimov, Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J. Phys. Chem. B 110, 16827–16845 (2006)

    Article  Google Scholar 

  7. R.D. Schaller, M. Sykora, J.M. Pietryga, V.I. Klimov, Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006)

    Article  ADS  Google Scholar 

  8. G. Hodes, Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells. J. Phys. Chem. C 112, 17778–17787 (2008)

    Article  Google Scholar 

  9. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago et al., Recombination in quantum dot sensitized solar cells. Acc. Chem. Res. 42, 1848–1857 (2009)

    Article  Google Scholar 

  10. N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, J. Bisquert, R. Gomez, CdSe quantum dot-sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment. J. Phys. Chem. C 113, 4208–4214 (2009)

    Article  Google Scholar 

  11. Y.L. Lee, B.M. Huang, H.T. Chien, Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chem. Mater. 20, 6903–6905 (2008)

    Article  Google Scholar 

  12. C.H. Chang, Y.L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Appl. Phys. Lett. 91, 053503 (2007)

    Article  ADS  Google Scholar 

  13. H.J. Lee, J. Bang, J. Park, S. Kim, S.M. Park, Multilayered semiconductor (CdS/CdSe/ZnS)-sensitized TiO2 mesoporous solar cells: all prepared by successive ionic layer adsorption and reaction processes. Chem. Mater. 22, 5636–5643 (2010)

    Article  Google Scholar 

  14. H. Lee, M.K. Wang, P. Chen et al., Efficient CdSe quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett. 9, 4221–4227 (2009)

    Article  ADS  Google Scholar 

  15. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, Quantum dot sensitized solar cells with improved efficiency prepared using electrophoretic deposition. ACS Nano 4, 5962–5968 (2010)

    Article  Google Scholar 

  16. M. Shalom, S. Buhbut, S. Tirosh, A. Zaban, Design rules for high-efficiency quantum-dot-sensitized solar cells: a multilayer approach. J. Phys. Chem. Lett. 3, 2436–2441 (2012)

    Article  Google Scholar 

  17. Q. Shen, J. Kobayashi, L.J. Diguna, T. Toyoda, Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. J. Appl. Phys. 103, 084304 (2008)

    Article  ADS  Google Scholar 

  18. S. Gimenez, I. Mora-Sero, L. Macor et al., Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009)

    Article  Google Scholar 

  19. L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl. Phys. Lett. 91, 023116 (2007)

    Article  ADS  Google Scholar 

  20. D.H. Rose, F.S. Hasoon, R.G. Dhere et al., Fabrication procedures and process sensitivities for CdS/CdTe solar cells. Prog. Photovolt. 7, 331–340 (1999)

    Article  Google Scholar 

  21. J. Tang, K.W. Kemp, S. Hoogland et al., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)

    Article  ADS  Google Scholar 

  22. C.F. Chi, S.Y. Liau, Y.L. Lee, The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation. Nanotechnology 21, 025202 (2010)

    Article  ADS  Google Scholar 

  23. H.Y. Wang, G.M. Wang, Y.C. Ling et al., Photoelectrochemical study of oxygen deficient TiO2 nanowire arrays with CdS quantum dot sensitization. Nanoscale 4, 1463–1466 (2012)

    Article  ADS  Google Scholar 

  24. J.A. Seabold, K. Shankar, R.H.T. Wilke et al., Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20, 5266–5273 (2008)

    Article  Google Scholar 

  25. J.H. Bang, P.V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3, 1467–1476 (2009)

    Article  Google Scholar 

  26. M. Samadpour, A.I. Zad, N. Taghavinia, M. Molaei, A new structure to increase the photostability of CdTe quantum dot sensitized solar cells. J. Phys. D, Appl. Phys. 44, 045103 (2011)

    Article  ADS  Google Scholar 

  27. A. Ruland, C. Schulz-Drost, V. Sgobba, D.M. Guldi, Enhancing photocurrent efficiencies by resonance energy transfer in CdTe quantum dot multilayers: towards rainbow solar cells. Adv. Mater. 23, 4573–4577 (2011)

    Article  Google Scholar 

  28. H.H. Yang, W.G. Fan, A. Vaneski, A.S. Susha, W.Y. Teoh, A.L. Rogach, Heterojunction engineering of CdTe and CdSe quantum dots on TiO2 nanotube arrays: intricate effects of size-dependency and interfacial contact on photoconversion efficiencies. Adv. Funct. Mater. 22, 2821–2829 (2012)

    Article  Google Scholar 

  29. E. Talgorn, R.D. Abellon, P.J. Kooyman et al., Supercrystals of CdSe quantum dots with high charge mobility and efficient electron transfer to TiO2. ACS Nano 4, 1723–1731 (2010)

    Article  Google Scholar 

  30. J. Aldana, Y.A. Wang, X.G. Peng, Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850 (2001)

    Article  Google Scholar 

  31. E. Chibowski, S. Gopalakrishnan, M.A. Busch, K.W. Busch, Residual variations in the zeta potential of TiO2 (anatase) suspension as a result of exposure to radiofrequency electric fields. J. Colloid Interface Sci. 139, 43–54 (1990)

    Article  Google Scholar 

  32. P. Fernandez-Ibanez, F.J. de las Nieves, S. Malato, Titanium dioxide/electrolyte solution interface: electron transfer phenomena. J. Colloid Interface Sci. 227, 510–516 (2000)

    Article  Google Scholar 

  33. X.H. Song, M.Q. Wang, Y.H. Shi, J.P. Deng, Z. Yang, X. Yao, In situ hydrothermal growth of CdSe(S) nanocrystals on mesoporous TiO2 films for quantum dot-sensitized solar cells. Electrochim. Acta 81, 260–267 (2012)

    Article  Google Scholar 

  34. H.K. Wang, C.Y. Luan, X.Q. Xu, S.V. Kershaw, A.L. Rogacht, In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous TiO2 films for quantum dot sensitized solar cells. J. Phys. Chem. C 116, 484–489 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the 973 Project of China (Grant no. 2012CB934302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Yang Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sai, L., Kong, X.Y. Electrostatic assembly of CdTe quantum dots with different charged ligands into TiO2 porous film for solar cells. Appl. Phys. A 114, 1153–1160 (2014). https://doi.org/10.1007/s00339-013-7702-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7702-7

Keywords

Navigation