Skip to main content
Log in

Molecular dynamic study on contact angle of water droplet on a single-wall carbon nanotube (SWCNT) plate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations are carried out to study the interaction between a carbon nanotube (CNT) plate and nano-sized water droplet. The cases with or without a quadrupole term acting on the charge sites of the water molecule, are directly compared. The wettability of the CNT plate with different separation distances is studied, and the contact angle on the plates with various separation distances is measured and analyzed. The simulation indicates that the contribution from quadrupole potential is negligible for wetting between twin CNTs and liquid water, while it is significant for holding a sphere-like water droplet and forming a reasonable contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

d :

thickness of phase transition

k C :

electrostatic constant, Å kcal/mol

q :

electron charge, e

r ij :

distance between two atoms i and j, Å

r e :

equimolar radius, Å

K r :

elasticity constant of harmonic bond, eV/Å2

K θ :

elasticity constant of harmonic angle, eV/rad2

U ab :

potential function, J

δ :

Dirac Delta function

ε :

depth of potential well, Kcal/mol

ξ :

intermediate variable

θ :

degree of angle,

ρ :

density, g/cm3

σ :

minimal distance between atoms when potential energy equal zero, Å

Θ :

quadrupole moment tensor, C m2

l :

liquid

v :

vapor

α :

x,y,z

β :

x,y,z

C:

coulomb related variable

CC:

interaction between carbon atoms

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Lett. Nat. 354, 56–58 (1991)

    Article  Google Scholar 

  2. P.J.F. Harris, Carbon NanoTubes and Related Structures (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  3. K. Korrdas, G. Toth, P. Moilanen, M. Kumpumaki, J. Vahakangas, A. Uusimaki, R. Vajtai, P.M. Ajayan, Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett. 90, 123105 (2007)

    Article  ADS  Google Scholar 

  4. T.L. Sun, G.J. Wang, H. Liu, L. Feng, L. Jiang, D.B. Zhu, Control over the wettability of an aligned carbon nanotube film. J. Am. Chem. Soc. 125, 14996–14997 (2003)

    Article  Google Scholar 

  5. J. Wang, Carbon-nanotube based electrochemical biosensor: a review. Electroanalysis 17(1), 7–14 (2005)

    Article  Google Scholar 

  6. S.P. Jarvis, T. Uchihashi, T. Ishida, H. Tokumoto, Y. Nakayama, Local solvation shell measurement in water using a carbon nanotube probe. J. Phys. Chem. B 104, 6091–6094 (2000)

    Article  Google Scholar 

  7. D. Cai, L. Ren, H.Z. Zhao, C.J. Xu, L. Zhang, Y. Yu, H.Z. Wang, Y.C. Lan, M.F. Roberts, J.H. Chuang, M.J. Naughton, Z.F. Ren, T.C. Chiles, A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat. Nanotechnol. 5, 597–601 (2010)

    Article  ADS  Google Scholar 

  8. J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y.F. Shi, P.M. Ajayan, N.A. Koratkar, Wetting transparency of graphene. Nat. Mater. 11, 217–222 (2012)

    Article  ADS  Google Scholar 

  9. D. Sergi, G. Scocchi, A. Ortona, Molecular dynamics simulations of the contact angle between water droplets and graphite surface. eprint (2012). arXiv:1204.3715

  10. C. Journet, S. Moulinet, C. Ybert, S.T. Purcell, L. Bocquet, Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhys. Lett. 71(1), 104–109 (2005)

    Article  ADS  Google Scholar 

  11. X.H. Men, Z.Z. Zhang, H.J. Song, K. Wang, W. Jiang, Fabrication of superhydrophobic surface with poly(furfurl alcohol)/multi-walled carbon nanotubes composites. Appl. Surf. Sci. 254, 2563–2568 (2008)

    Article  ADS  Google Scholar 

  12. T. Werder, J.H. Walther, R.L. Jaffe, T. Halicioglu, F. Noca, P. Koumoutsakos, Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Lett. 1(12), 697–702 (2001)

    Article  ADS  Google Scholar 

  13. A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes. Chem. Rev. 108, 5014–5034 (2008)

    Article  Google Scholar 

  14. Y. Tzeng, T.S. Huang, Y.C. Chen, C. Liu, Y.K. Liu, Hydration properties of carbon nanotubes and their effects on electrical and biosensor applications. New Diam. Front. Carbon Technol. 14(3), 193–201 (2004)

    Google Scholar 

  15. L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film. J. Phys. Chem. B 109, 7746–7748 (2005)

    Article  Google Scholar 

  16. J.L. Li, L.J. Wang, W. Jiang, Super-hydrophobic surface of bulk carbon nanotubes compacted by spark plasma sintering followed by modification with polytetrofluorethylene. Carbon 48, 2644–2673 (2010)

    Article  Google Scholar 

  17. A.I. Aria, M. Gharib, Bouncing water droplet on a superhydrophobic carbon nanotube array. eprint (2010). arXiv:1010.1351

  18. W.L. Jorgensen, J.D.M. Chandrasekhar, R.W. Impey, M. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  19. S.Q. Niu, M.L. Tan, T. Ichiye, The large quadrupole of water molecules. J. Chem. Phys. 134, 134501 (2011)

    Article  ADS  Google Scholar 

  20. Y. Mao, Y. Zhang, Thermal conductivity, shear viscosity and specific heat of rigid water models. Chem. Phys. Lett. 542, 37–41 (2012)

    Article  ADS  Google Scholar 

  21. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles, 1st edn. (Taylor & Francis, New York, 1998)

    Google Scholar 

  22. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equation of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1997)

    Article  ADS  Google Scholar 

  23. W. Humphrey, A. Dalke, K. Schulten, VMD-visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  24. J.H. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, Carbon nanotubes in water: structural characteristics and energetics. J. Phys. Chem. B 105, 9980–9987 (2001)

    Article  Google Scholar 

  25. F.Y. Hansen, L.W. Bruch, Molecular dynamics study of the dynamical excitations in commensurate monolayer films of nitrogen molecules on graphite: a test of the corrugation in the nitrogen-graphite potential. Phys. Rev. B 51(4), 2515–2536 (1995)

    Article  ADS  Google Scholar 

  26. S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  27. A. Wallqvist, B.J. Berne, Computer simulation of hydrophobic hydration forces on stacked plates at short range. J. Phys. Chem. B 99, 2893–2899 (1995)

    Article  Google Scholar 

  28. E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, Water-silica force field for simulating nanodevices. J. Phys. Chem. B 110, 21497–21508 (2006)

    Article  Google Scholar 

  29. S.H. Park, M.A. Carignano, R.J. Nap, I. Szleifer, Hydrophobic-induced surface reorganization: molecular dynamics simulations of water nanodroplets on perfluorocarbon self-assembled monolayers. Soft Matter 6(8), 1644–1654 (2010)

    Article  ADS  Google Scholar 

  30. W.M. Haynes, Handbook of Chemistry and Physics, 91st edn. (Taylor & Francis, New York, 2010), Chap. 6

    Google Scholar 

  31. M. Galassi et al., GNU Scientific Library Reference Manual, 3rd edn. Available at http://www.gnu.org/software/gsl/

Download references

Acknowledgements

Support for this work by the US National Science Foundation under grant number CBET- 1066917 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Y., Chen, CL. & Zhang, Y. Molecular dynamic study on contact angle of water droplet on a single-wall carbon nanotube (SWCNT) plate. Appl. Phys. A 111, 747–754 (2013). https://doi.org/10.1007/s00339-013-7699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7699-y

Keywords

Navigation