Skip to main content
Log in

Ion beam synthesis and carrier dynamics of ZnO nanoparticles embedded in a SiO2 matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) nanostructures have been synthesized by the implantation of ZnO molecular ions into SiO2 followed by high temperature thermal annealing. 35 keV ZnO ions were implanted to a fluence of 5×1016 ions/cm2 into SiO2 at room temperature (RT). The implanted sample was annealed in an oxygen environment to allow the growth of ZnO precipitates. In the as-implanted sample, Zn nanoparticles up to 4.5 nm in diameter were observed and were distributed throughout the implanted depth in the SiO2. The highest concentration of Zn from the implantation was at a depth of 25 nm. During annealing, Zn diffused into the substrate and combined with oxygen to form ZnO. ZnO nanostructures thus formed had diameters up to 8 nm, embedded in SiO2. Donor-bound exciton (D, X), acceptor-bound exciton (A, X), and donor–acceptor-pair (DAP) transitions were observed in low temperature photoluminescence (PL) measurements on an annealed sample. RT-PL measurement showed band-edge emission in the ultraviolet region with a full width at half maximum of 121 meV. Time-resolved PL measurements performed at 4 K revealed an excitonic lifetime of 160 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.Y. Liang, A.D. Yoffe, Phys. Rev. Lett. 20, 59 (1968)

    Article  ADS  Google Scholar 

  2. V.A. Fonoberov, K.A. Alim, A.A. Balandin, F. Xiu, J. Liu, Phys. Rev. B 73, 165317 (2006)

    Article  ADS  Google Scholar 

  3. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  4. U. Pal, P. Santiago, J. Phys. Chem. B 109, 15317 (2005)

    Article  Google Scholar 

  5. A. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, W. Lee, Appl. Phys. Lett. 92, 092113 (2008)

    Article  ADS  Google Scholar 

  6. Y.Y. Tay, S. Li, F. Boey, Y.H. Cheng, M.H. Liang, Physica B 394, 372 (2007)

    Article  ADS  Google Scholar 

  7. H. Sun, M. Luo, W. Weng, K. Cheng, P. Du, G. Shen, G. Han, Nanotechnology 19, 395602 (2008)

    Article  ADS  Google Scholar 

  8. H. Amekura, Y. Sakuma, K. Kono, Y. Takeda, N. Kishimoto, C. Buchal, Physica B 376–377, 760 (2006)

    Article  Google Scholar 

  9. J.K. Lee, C.R. Tewell, R.K. Schulze, M. Nastasi, D.W. Hamby, D.A. Lucca, H.S. Jung, K.S. Hong, Appl. Phys. Lett. 86, 183111 (2005)

    Article  ADS  Google Scholar 

  10. Y.X. Liu, Y.C. Liu, C.L. Shao, R. Mu, J. Phys. D 37, 3025 (2004)

    Article  ADS  Google Scholar 

  11. H. Amekura, N. Umeda, Y. Sakuma, O.A. Plaksin, Y. Takeda, N. Kishimoto, C. Buchal, Appl. Phys. Lett. 88, 153119 (2006)

    Article  ADS  Google Scholar 

  12. Y.X. Liu, Y.C. Liu, D.Z. Shen, G.Z. Zhong, X.W. Fan, X.G. Kong, R. Mu, D.O. Henderson, J. Cryst. Growth 240, 152 (2002)

    Article  ADS  Google Scholar 

  13. H. Amekura, K. Kono, N. Kishimoto, C. Buchal, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 242, 96 (2006)

    Article  ADS  Google Scholar 

  14. J. Chen, R. Mu, A. Ueda, M.H. Wu, Y. Tung, Z. Gu, D.O. Henderson, C.W. White, J.D. Budai, R.A. Zuhr, J. Vac. Sci. Technol. A 16, 1409 (1998)

    Article  ADS  Google Scholar 

  15. H. Amekura, N. Umeda, H. Boldyryeva, N. Kishimoto, C. Buchal, S. Mantl, Appl. Phys. Lett. 90, 083102 (2007)

    Article  ADS  Google Scholar 

  16. A. Meldrum, L.A. Boatner, C.W. White, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 178, 7 (2001)

    Article  ADS  Google Scholar 

  17. V.N. Popok, E.E.B. Campbell, Rev. Adv. Mater. Sci. 11, 19 (2006)

    Google Scholar 

  18. P.K. Kuiri, D.P. Mahapatra, J. Phys. D 43, 395404 (2010)

    Article  Google Scholar 

  19. Y.L. Liu, Y.C. Liu, W. Feng, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, D.J. Wang, Q.D. Zhao, J. Chem. Phys. 122, 174703 (2005)

    Article  ADS  Google Scholar 

  20. C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback, H. Shen, J. Appl. Phys. 85, 2595 (1999)

    Article  ADS  Google Scholar 

  21. B.P. Zhang, N.T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Appl. Phys. Lett. 83, 1635 (2003)

    Article  ADS  Google Scholar 

  22. E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)

    Article  ADS  Google Scholar 

  23. H.Z. Massoud, J.D. Plummer, E.A. Irene, J. Electrochem. Soc. 132, 1745 (1985)

    Article  Google Scholar 

  24. R. Middleton, A Negative Ion Cookbook (University of Pennsylvania, Philadelphia, 1990)

    Google Scholar 

  25. M. Mayer, AIP Conf. Proc. 475, 541 (1999)

    Article  ADS  Google Scholar 

  26. M.D.Z. James, F. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 268, 1818 (2010)

    Article  ADS  Google Scholar 

  27. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (ULVAC-PHI, Chigaski, 1995)

    Google Scholar 

  28. Y. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  ADS  Google Scholar 

  29. H. Amekura, N. Umeda, Y. Sakuma, N. Kishimoto, C. Buchal, Appl. Phys. Lett. 87, 013109 (2005)

    Article  ADS  Google Scholar 

  30. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  31. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Hoelscher, R.E. Sherriff, M.T. Harris, M.J. Callahan, J. Appl. Phys. 88, 2152 (2000)

    Article  ADS  Google Scholar 

  32. X.H. Zhang, S.J. Chua, A.M. Yong, S.Y. Chow, H.Y. Yang, S.P. Lau, S.F. Yu, Appl. Phys. Lett. 88, 221903 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Center for Advanced Research at the University of North Texas, which made possible the XPS and HRTEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pandey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, B., Poudel, P.R., Singh, A.K. et al. Ion beam synthesis and carrier dynamics of ZnO nanoparticles embedded in a SiO2 matrix. Appl. Phys. A 112, 801–806 (2013). https://doi.org/10.1007/s00339-013-7692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7692-5

Keywords

Navigation