Skip to main content
Log in

Magnetoelectric response and dielectric property of multiferroic Co0.65Zn0.35Fe2O4–PbZr0.52Ti0.48O3 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of nanometric grain size modulation on the behavior of different kinds of chemically synthesized multiferroic ferrite–ferroelectric nanocomposites with cobalt zinc ferrite (Co0.65Zn0.35Fe2O4) as a ferrimagnetic component and lead zirconate titanate (PbZr0.52Ti0.48O3) as a ferroelectric component have been investigated in detail. Formation of two distinct pure phases of as-prepared nanocomposites was confirmed from recorded X-ray diffraction patterns at room temperature. The backscattered mode of a field emission scanning electron microscope micrograph has been used to study the microstructure, average grain size, and distribution of the two individual phases in the composites. Magnetization vs. magnetic field measurements clearly show the room temperature good hysteretic ferrimagnetic behavior of the composites having coercivity of 83–124 Oe and spontaneous magnetization of 20–24 emu/g. The dielectric constant is found to increase with increasing grain size of the nanocomposites from 124 to 687 at a frequency of 1 kHz. Investigation of temperature-dependent dielectric constant behavior reveals that the paraelectric–ferroelectric transition temperature decreases from 364 to 351 °C with decreasing particle size. A complex impedance spectroscopy study was carried out in the frequency range of 50 Hz–1 MHz and in the temperature range of 27–400 °C. The contribution of both grains and grain boundaries in the electrical properties of the composites has been confirmed from the complex impedance spectroscopy data. The activation energies estimated from the complex impedance spectroscopy and the ac conductivity spectrum are found to be nearly the same for the nanocomposites. The polarization vs. electric field measurement exhibits a typical ferroelectric hysteresis loop at room temperature and provides conclusive evidence of the presence of spontaneous polarization in the composites, confirming the presence of excellent ferroelectricity in the nanocomposites. At room temperature the multiferroic behavior of the composites is also confirmed from detailed magnetoelectric (ME) response studies. The optimal ME response is observed to be 0.6 % for higher temperature sintered composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Eerenstein et al., Nature (London) 442, 759 (2006)

    Article  ADS  Google Scholar 

  2. N. Hur et al., Nature 419, 818 (2002)

    Article  Google Scholar 

  3. M. Kiyotake, W. Manfred, J. Appl. Phys. 81, 100 (2002)

    Google Scholar 

  4. C.W. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, Y. Lin, J. Appl. Phys. 94, 5930 (2003)

    Article  ADS  Google Scholar 

  5. H. Zhang, S.W. Or, H.L.W. Chan, J. Appl. Phys. 104, 104109 (2008)

    Article  ADS  Google Scholar 

  6. G. Srinivasan, R. Hayes, C.P. Devreugd, V.M. Laletsin, N. Paddubnaya, Appl. Phys. A 80, 891 (2005)

    Article  ADS  Google Scholar 

  7. H.F. Zhang, S.W. Or, H.L.W. Chan, Mater. Res. Bull. 44, 1339 (2009)

    Article  Google Scholar 

  8. W. Chen, Z.H. Wang, C. Ke, W. Zhu, O.K. Tan, Mater. Sci. Eng. B 162, 47 (2009)

    Article  Google Scholar 

  9. C. Harnagea, L. Mitoseriu, V. Buscaglia, I. Pallecchi, P. Nanni, J. Eur. Ceram. Soc. 27, 3947 (2007)

    Article  Google Scholar 

  10. S.X. Dong, J.Y. Zhai, Z.P. Xing, J.F. Li, D. Viehland, Appl. Phys. Lett. 86, 102901 (2005)

    Article  ADS  Google Scholar 

  11. S.X. Dong, J.Y. Zhai, F. Bai, J.F. Li, D. Viehland, Appl. Phys. Lett. 87, 062502 (2005)

    Article  ADS  Google Scholar 

  12. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 87, 103502 (2005)

    Article  ADS  Google Scholar 

  13. Y.K. Fetisov, G. Srinivasan, Appl. Phys. Lett. 88, 143503 (2006)

    Article  ADS  Google Scholar 

  14. A.S. Tatarenko, M.I. Bichurin, G. Srinivasan, Electron. Lett. 41, 596 (2005)

    Article  Google Scholar 

  15. F. Chen, Q.F. Zhang, J.H. Li, Y.J. Qi, C.J. Lu, Appl. Phys. Lett. 89, 092910 (2006)

    Article  ADS  Google Scholar 

  16. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Physica B 405, 340 (2010)

    Article  ADS  Google Scholar 

  17. X. Chao, Z. Yang, M. Dong, Y. Zhang, J. Magn. Magn. Mater. 323, 2012 (2011)

    Article  ADS  Google Scholar 

  18. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  19. H.T. Martirena, J.C. Burfoot, Ferroelectrics 7, 151 (1974)

    Article  Google Scholar 

  20. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  Google Scholar 

  21. H. Vogel, Z. Phys. 22, 645 (1921)

    Google Scholar 

  22. G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

  23. A. Singh, R. Chatterjee, Appl. Phys. Lett. 93, 182908 (2008)

    Article  ADS  Google Scholar 

  24. b.C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)

    Article  Google Scholar 

  25. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504 (2001)

    Article  ADS  Google Scholar 

  26. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  27. K.L. Nagi, S.W. Martin, Phys. Rev. B 40, 10550 (1989)

    Article  ADS  Google Scholar 

  28. K.L. Nagi, R.W. Rendell, H. Jain, Phys. Rev. B 30, 2133 (1984)

    Article  ADS  Google Scholar 

  29. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  ADS  Google Scholar 

  30. R. Vaish, K.B.R. Varma, J. Am. Ceram. Soc. 92, 1993 (2009)

    Article  Google Scholar 

  31. N. Ponpandian, A. Narayanasamy, J. Appl. Phys. 92, 2770 (2002)

    Article  ADS  Google Scholar 

  32. M. Vollman, R. Waser, J. Am. Ceram. Soc. 77, 235 (1994)

    Article  Google Scholar 

  33. R.A. De Souza, J. Fleig, J. Maier, Z. Zhang, W. Sigle, M. Rühle, J. Appl. Phys. 97, 053502 (2005)

    Article  ADS  Google Scholar 

  34. C. Elissalde, J. Ravez, J. Mater. Chem. 11, 1957 (2001)

    Article  Google Scholar 

  35. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  36. N. Hirose, A.R. West, J. Am. Ceram. Soc. 79, 1633 (1996)

    Article  Google Scholar 

  37. K. Funke, Solid State Ion. 18–19, 183 (1986)

    Article  Google Scholar 

  38. K.L. Ngai, Comments Solid State Phys. 9, 127 (1979)

    Google Scholar 

  39. K.L. Ngai, Comments Solid State Phys. 9, 141 (1980)

    Google Scholar 

  40. K. Funke, Prog. Solid State Chem. 22, 111 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (T.K.N.) would like to acknowledge the financial assistance of the Department of Science and Technology (DST), New Delhi, through project no. IR/S2/PU-04/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. K. Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, P.R., Nath, T.K. Magnetoelectric response and dielectric property of multiferroic Co0.65Zn0.35Fe2O4–PbZr0.52Ti0.48O3 nanocomposites. Appl. Phys. A 112, 789–799 (2013). https://doi.org/10.1007/s00339-013-7691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7691-6

Keywords

Navigation