Applied Physics A

, Volume 112, Issue 3, pp 775–780 | Cite as

Diameter-dependent coercivity of cobalt nanowires

  • Sirshendu Gayen
  • Milan K. Sanyal
  • Biswarup Satpati
  • Atikur Rahman
Article

Abstract

We show that the coercivity of electrochemically grown cobalt nanowires (NWs) within the pores of a polycarbonate membrane can be changed to a large extent by tuning their diameters. The face centered cubic crystalline structure of the NWs having diameter in the range of 10 to 200 nm could be retained. Smaller diameter wires (below 30 nm) are found to be single crystalline and oriented in the [110] growth direction, but for higher diameter wires the crystallite size became very small. Magnetization measurements with an applied field parallel to the axis of the NWs show that the nature of the MH loop changes from square to linear as the diameter of the NWs increases. The coercivity was found to be 1700 Oe and 480 Oe at 5 K (1000 Oe and 250 Oe at 300 K) for 10 nm and 100 nm wires, respectively. The observed changes in the nature of the MH loop and in coercivity could be explained following the Stoner–Wohlfarth model and using the fact that the domain size reduces as the diameter of the wires increases.

References

  1. 1.
    L. O’Brien, D. Petit, E.R. Lewis, R.P. Cowburn, D.E. Read, J. Sampaio, H.T. Zeng, A.-V. Jausovec, Phys. Rev. Lett. 106, 087204 (2011) ADSCrossRefGoogle Scholar
  2. 2.
    J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J.K. Jain, N. Samarth, T.E. Mallouk, M.H.W. Chan, Nat. Phys. 6, 389 (2010) CrossRefGoogle Scholar
  3. 3.
    R. Skomsky, J. Phys. Condens. Matter 15, R841 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    R.A. Silva, T.S. Machado, G. Cernicchiaro, A.P. Guimarães, L.C. Sampaio, Phys. Rev. B 79, 134434 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    G. Dumpich, T.P. Krome, B. Hausmanns, J. Magn. Magn. Mater. 248, 241 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    A. Fert, L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999) ADSCrossRefGoogle Scholar
  8. 8.
    X. Jiang, L. Thomas, R. Moriya, M. Hayashi, B. Bergman, C. Rettner, S.S.P. Parkin, Nat. Commun. 1, 25 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys. Condens. Matter 13, R433 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    V. Raposo, J.M. Garcia, J.M. González, M. Vázquez, J. Magn. Magn. Mater. 222, 227 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    T.M. Whitney, J.S. Jiang, P.C. Searson, C.L. Chien, Science 261, 1316 (1993) ADSCrossRefGoogle Scholar
  12. 12.
    F. Brüssing, G. Nowak, A. Schumann, S. Buschhorn, H. Zabel, K. Theis-Bröhl, J. Phys. D, Appl. Phys. 42, 165001 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    K. Theis-Bröhl, B.P. Toperverg, V. Leiner, A. Westphalen, H. Zabel, J. McCord, K. Rott, H. Brückl, Phys. Rev. B 71, 020403(R) (2005) ADSCrossRefGoogle Scholar
  14. 14.
    K. Theis-Bröhl, T. Schmitte, V. Leiner, H. Zabel, K. Rott, H. Brückl, J. McCord, Phys. Rev. B 67, 184415 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    A. Singh, S. Mukhopadhyay, A. Ghosh, Phys. Rev. Lett. 105, 067206 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    M. Brands, R. Wieser, C. Hassel, D. Hinzke, G. Dumpich, Phys. Rev. B 74, 174411 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S.S.P. Parkin, Nature 443, 197 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    S.D. BeachGeoffrey, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    C.R. Martin, Science 266, 1961 (1994) ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Hulteen, C.R. Martin, J. Mater. Chem. 7, 1075 (1997) CrossRefGoogle Scholar
  21. 21.
    X.W. Wang, Z.H. Yuan, S.Q. Sun, Y.Q. Duan, L.J. Bie, Phys. Lett. A 373, 2887 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    J. Sánchez-Barriga, M. Lucas, F. Radu, E. Martin, M. Multigner, P. Marin, A. Hernando, G. Rivero, Phys. Rev. B 80, 184424 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    X.W. Wang, G.T. Fei, B. Wu, L. Chen, Z.Q. Chu, Phys. Lett. A 359, 220 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    Z. Ye, H. Liu, Z. Luo, H. Lee, W. Wu, D.G. Naugle, I. Lyuksyutov, J. Appl. Phys. 105, 07E126 (2009) CrossRefGoogle Scholar
  25. 25.
    Y. Henry, A. Iovan, J.-M. George, L. Piraux, Phys. Rev. B 66, 184430 (2002) ADSCrossRefGoogle Scholar
  26. 26.
    F. Li, T. Wang, L. Ren, J. Sun, J. Phys. Condens. Matter 16, 8053 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    H. Luo, D. Wang, J. He, Y. Lu, J. Phys. Chem. B 109, 1919 (2005) CrossRefGoogle Scholar
  28. 28.
    H. Zeng, R. Skomski, L. Menon, Y. Liu, S. Bandyopadhyay, D.J. Sellmyer, Phys. Rev. B 65, 134426 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    S. Ge, C. Li, X. Ma, W. Li, L. Xi, C.X. Li, J. Appl. Phys. 90, 509 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    V.R. Caffarena, J.L. Capitaneo, R.A. Simão, A.P. Guimarães, Mater. Res. 9, 205 (2006) CrossRefGoogle Scholar
  31. 31.
    Y. Yang, Y. Chen, Y. Wu, X. Chen, M. Kong, J. Nanomater. 2010, 4 (2010) Google Scholar
  32. 32.
    H. Pan, B. Liu, J. Yi, C. Poh, S. Lim, J. Ding, Y. Feng, C.H.A. Huan, J. Lin, J. Phys. Chem. B 109, 3094 (2005) CrossRefGoogle Scholar
  33. 33.
    T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang, J. Phys. Condens. Matter 14, 355 (2002) ADSCrossRefGoogle Scholar
  34. 34.
    M.E.T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, J. Vetter, Adv. Mater. 13, 62 (2001) CrossRefGoogle Scholar
  35. 35.
    C. Schönenberger, B.M.I. van der Zande, L.G.J. Fokkink, M. Henny, C. Schmid, M. Krüger, A. Bachtold, R. Huber, H. Birk, U. Staufer, J. Phys. Chem. B 101, 5497 (1997) CrossRefGoogle Scholar
  36. 36.
    X. Huang, L. Li, X. Luo, X. Zhu, G. Li, J. Phys. Chem. C 112, 1468 (2008) CrossRefGoogle Scholar
  37. 37.
    X.W. Wang, G.T. Fei, X.J. Xu, Z. Jin, L.D. Zhang, J. Phys. Chem. B 109, 24326 (2005) CrossRefGoogle Scholar
  38. 38.
    T. Suzuki, D. Weller, C.-A. Chang, R. Savoy, T. Huang, B.A. Gurney, V. Speriosu, Appl. Phys. Lett. 64, 2736 (1994) ADSCrossRefGoogle Scholar
  39. 39.
    C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. de Miguel, R. Miranda, S. Ferrer, Vacuum 41, 503 (1990) CrossRefGoogle Scholar
  40. 40.
    R.C. O’Handley, Modern Magnetic Materials: Principles and Applications (Wiley, New York, 2000), p. 319 Google Scholar
  41. 41.
    J.-H. Gao, D.-L. Sun, Q.-F. Zhan, W. He, Z.-H. Cheng, Phys. Rev. B 75, 064421 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    K.R. Pirota, E.L. Silva, D. Zanchet, D. Navas, M. Vázquez, M. Hernández-Vélez, K. Marcelo, Phys. Rev. B 76, 233410 (2007) ADSCrossRefGoogle Scholar
  43. 43.
    S. Dubois, J. Colin, J.L. Duvail, L. Piraux, Phys. Rev. B 61, 14315 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    S. Gayen, M.K. Sanyal, A. Sarma, M. Wolff, K. Zhernenkov, H. Zabel, Phys. Rev. B 82, 174429 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sirshendu Gayen
    • 1
  • Milan K. Sanyal
    • 1
  • Biswarup Satpati
    • 1
  • Atikur Rahman
    • 1
  1. 1.Surface Physics DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations