Skip to main content
Log in

Heusler-alloy films for spintronic devices

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The next generation of magnetic memories requires an ideal spin-polarised electron source, achievable by using a half-metallic Heusler-alloy film. For Heusler-alloy film implementation, it is critical to realise both large volumes of coherent magnetisation reversal and high interfacial atomic ordering. In this review we present solutions to satisfy these requirements by measuring activation volumes and observing cross-sectional atomic structures. We find that polycrystalline thin films possess 10 times larger activation volumes than epitaxial ones and also form the perfectly ordered crystalline phase. These features are very useful for the application of Heusler-alloy films in a future magnetic memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Takagishi, K. Yamada, H. Iwasaki, H.N. Fuke, S. Hashimoto, IEEE Trans. Magn. 46, 2086 (2010)

    Article  ADS  Google Scholar 

  2. M. Oogane, T. Miyazaki, Magnetic random access memory, in Epitaxial Ferromagnetic Films and Spintronic Applications, ed. by A. Hirohata, Y. Otani (Research Signpost, Kerala, 2009), pp. 335–361

    Google Scholar 

  3. I. Galanakis, P.H. Dederichs (eds.), Half-Metallic Alloys (Springer, Berlin, 2005)

    Google Scholar 

  4. A. Hirohata, M. Kikuchi, N. Tezuka, K. Inomata, J.S. Claydon, Y.B. Xu, G. van der Laan, Curr. Opin. Solid State Mater. Sci. 10, 93 (2006)

    Article  ADS  Google Scholar 

  5. T. Block, C. Felser, G. Jakob, J. Ensling, B. Mühling, P. Gütlich, R.J. Cava, J. Solid State Chem. 176, 646 (2003)

    Article  ADS  Google Scholar 

  6. K. Inomata, S. Okamura, R. Goto, N. Tezuka, Jpn. J. Appl. Phys. 42, L419 (2003)

    Article  ADS  Google Scholar 

  7. A. Hirohata, H. Kurebayashi, S. Okamura, M. Kikuchi, T. Masaki, T. Nozaki, N. Tezuka, K. Inomata, J. Appl. Phys. 97, 103714 (2005)

    Article  ADS  Google Scholar 

  8. A. Hirohata, H. Kurebayashi, S. Okamura, T. Masaki, T. Nozaki, M. Kikuchi, N. Tezuka, K. Inomata, J.S. Claydon, Y.B. Xu, J. Appl. Phys. 97, 10C308 (2005)

    Article  Google Scholar 

  9. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  10. Y. Miura, K. Nagao, M. Shirai, Phys. Rev. B 69, 144413 (2004)

    Article  ADS  Google Scholar 

  11. Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, T. Miyazaki, Jpn. J. Appl. Phys. 44, L1100 (2005)

    Article  ADS  Google Scholar 

  12. N. Tezuka, N. Ikeda, S. Sugimoto, K. Inomata, Appl. Phys. Lett. 89, 252508 (2006)

    Article  ADS  Google Scholar 

  13. Y.K. Takahashi, A. Srinivasan, B. Varaprasad, A. Rajanikanth, N. Hase, T.M. Nakatani, S. Kasai, T. Furubayashi, K. Hono, Appl. Phys. Lett. 98, 152501 (2011)

    Article  ADS  Google Scholar 

  14. J. Sagar, H. Sukegawa, L. Lari, V.K. Lazarov, S. Mitani, K. O’Grady, A. Hirohata, Appl. Phys. Lett. 101, 102410 (2012)

    Article  ADS  Google Scholar 

  15. A. Hirohata, S. Ladak, N.P. Aley, G.B. Hix, Appl. Phys. Lett. 95, 252506 (2009)

    Article  ADS  Google Scholar 

  16. M. Vopsaroiu, M.J. Thwaites, S. Rand, P.J. Grundy, K. O’Grady, IEEE Trans. Magn. 40, 2443 (2004)

    Article  ADS  Google Scholar 

  17. M. El-Hilo, K. O’Grady, R.W. Chantrell, J. Magn. Magn. Mater. 120, 244 (1993)

    Article  ADS  Google Scholar 

  18. J. Sagar, L.R. Fleet, A. Hirohata, K. O’Grady, IEEE Trans. Magn. 47, 2440 (2011)

    Article  ADS  Google Scholar 

  19. E.P. Wohlfarth, J. Phys. F, Met. Phys. 14, 155 (1984)

    Article  ADS  Google Scholar 

  20. L. Lari, S. Lea, C. Feeser, B.W. Wessels, V.K. Lazarov, J. Appl. Phys. 111, 07C311 (2012)

    Article  Google Scholar 

  21. M. Hytch, F. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998)

    Article  Google Scholar 

  22. elim.physik.uni-ulm.de/?page_id=564

  23. K. O’Grady, L. Fernandex-Outon, G. Vallejo-Fernandez, J. Magn. Magn. Mater. 322, 883 (2010)

    Article  ADS  Google Scholar 

  24. V.K. Lazarov, K. Yoshida, J. Sato, P.J. Hasnip, M. Oogane, A. Hirohata, Y. Ando, Appl. Phys. Lett. 98, 242508 (2011)

    Article  ADS  Google Scholar 

  25. L.R. Fleet, G. Cheglakov, K. Yoshida, V.K. Lazarov, T. Nakayama, A. Hirohata, J. Phys. D, Appl. Phys. 45, 032001(FTC) (2012)

    Article  ADS  Google Scholar 

  26. H. Endo, A. Hirohata, T. Nakayama, K. O’Grady, J. Phys. D, Appl. Phys. 44, 145003 (2011)

    Article  ADS  Google Scholar 

  27. N.P. Aley, R. Kroeger, B. Lafferty, J. Agnew, Y. Lu, K. O’Grady, IEEE Trans. Magn. 45, 3869 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Kevin O’Grady for a fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsufumi Hirohata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirohata, A., Sagar, J., Lari, L. et al. Heusler-alloy films for spintronic devices. Appl. Phys. A 111, 423–430 (2013). https://doi.org/10.1007/s00339-013-7679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7679-2

Keywords

Navigation