Advertisement

Applied Physics A

, Volume 114, Issue 2, pp 435–443 | Cite as

Development and characterization of ultra-porous silica films made by the sol–gel method. Application to biosensing

  • Caroline Desfours
  • Sylvie Calas-Etienne
  • Robert Horvath
  • Marta Martin
  • Csilla Gergely
  • Frédéric Cuisinier
  • Pascal Etienne
Article
  • 342 Downloads

Abstract

The aim of this work is to demonstrate the sensing ability of reverse-symmetry waveguides to investigate adsorption of casein and build-up of poly-L-lysine mediated casein multilayers. A first part of this study is dedicated to the elaboration and characterization of ultra-porous thin films with very low refractive indices by an appropriate sol–gel method. This will form the basis of our planar optical sensors. Optical waveguide light mode spectroscopy is a real-time and sensitive method to study protein adsorption kinetics and lipid bilayers. We used it to test the obtained waveguides for in-situ monitoring of biomolecule adsorption. As a result, significant changes in the incoupling peak position were observed during the layer-by-layer adsorption. Finally, refractive index and thickness of the adsorbed layers were established.

Keywords

Refractive Index PDMS Cover Medium Effective Refractive Index TMCS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

R. Horvath holds a Marie Curie EIF Reintegration Fellowship (Opticell). The financial support from the Hungarian Scientific Research Fund is gratefully acknowledged (PD 73084). R. Horvath acknowledges the ‘Lendület’ grant from the Hungarian Academy of Sciences.

References

  1. 1.
    J.J. Ramsden, J. Mol. Recognit. 10, 109 (1997) CrossRefGoogle Scholar
  2. 2.
    R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier/North-Holland, Amsterdam, 1987) Google Scholar
  3. 3.
    W. Lukosz, D. Clerc, P.M. Nellen, C. Stamm, P. Weiss, Biosens. Bioelectron. 6(3), 227 (1991) CrossRefGoogle Scholar
  4. 4.
    F. Höök, M. Rodahl, P. Brzezinski, B. Kasemo, Langmuir 14, 729 (1998) CrossRefGoogle Scholar
  5. 5.
    P. Schaaf, P. Déjardin, A. Schmitt, Langmuir 3, 1131 (1987) CrossRefGoogle Scholar
  6. 6.
    K. Tiefenthaler, W. Lukosz, J. Opt. Soc. Am. B 6, 209 (1989) ADSCrossRefGoogle Scholar
  7. 7.
    C. Picart, G. Ladam, B. Senger, J.-C. Voegel, P. Schaaf, F.J.G. Cuisinier, C. Gergely, J. Chem. Phys. 115(2), 1086 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    C. Gergely, S. Bahi, B. Szalontai, H. Flores, P. Schaaf, J.C. Voegel, F.J.G. Cuisinier, Langmuir 20, 5575 (2004) CrossRefGoogle Scholar
  9. 9.
    F. Höök, J. Vörös, M. Rodahl, R. Kurrat, P. Böni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, B. Kasemo, Colloids Surf. B 24(2), 155 (2002) CrossRefGoogle Scholar
  10. 10.
    D. Clerc, W. Lukosz, Sens. Actuators B 11(2–3), 461 (1993) CrossRefGoogle Scholar
  11. 11.
    R. Horvath, L.R. Lindvold, N.B. Larsen, Appl. Phys. B, Lasers Opt. 74(4–5), 383 (2002) ADSGoogle Scholar
  12. 12.
    R. Horvath, H.C. Pedersen, N.B. Larsen, Appl. Phys. Lett. 81(12), 2166 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    R. Horvath, H.C. Pedersen, N. Skivesen, D. Selmeczi, N.B. Larsen, Opt. Lett. 28(14), 1233 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    R. Horvath, H.C. Pedersen, N. Skivesen, D. Selmeczi, N.B. Larsen, Appl. Phys. Lett. 86, 071101 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    R. Horvath, K. Cottier, H.C. Pedersen, J.J. Ramsden, Biosens. Bioelectron. 24(4), 799 (2008) CrossRefGoogle Scholar
  16. 16.
    R. Horvath, H.C. Pedersen, N. Skivesen, C. Svanberg, N.B. Larsen, J. Micromech. Microeng. 15, 1260 (2005) ADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    R. Horvath, H.C. Pedersen, F.J.G. Cuisinier, Appl. Phys. Lett. 88, 111102 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    D.S. Horne, Curr. Opin. Colloid Interface Sci. 7, 456 (2002) CrossRefGoogle Scholar
  20. 20.
    J. Maldonado-Valderrama, A. Martın-Molina, M.J. Galvez-Ruiz, A. Martın-Rodrıguez, M.A. Cabrerizo-Vılchez, J. Phys. Chem. B 108, 12940 (2004) CrossRefGoogle Scholar
  21. 21.
    R.K. Maheshwari, A.K. Singh, J. Gaddipati, R.C. Srimal, Life Sci. 78, 2081 (2006) CrossRefGoogle Scholar
  22. 22.
    H. Marsmann, J.-P. Kintzinger, Oxygen-17 and Silicon-29: NMR Basic Principles and Progress, vol. 17 (Springer, Berlin, 1981) Google Scholar
  23. 23.
    V. Rouessac, R. Coustel, F. Bosc, J. Durand, A. Ayral, Thin Solid Films 495, 232 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    K.S.W. Sing, Pure Appl. Chem. 57(4), 603 (1985) CrossRefGoogle Scholar
  25. 25.
    S.S. Kistler, Nature 227, 741 (1931) ADSCrossRefGoogle Scholar
  26. 26.
    S.S. Prakash, C.J. Brinker, A.J. Hurd, J. Non-Cryst. Solids 190, 264 (1995) ADSCrossRefGoogle Scholar
  27. 27.
    G. Decher, Science 277, 1232 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Caroline Desfours
    • 1
    • 2
  • Sylvie Calas-Etienne
    • 1
    • 2
  • Robert Horvath
    • 3
  • Marta Martin
    • 1
    • 2
  • Csilla Gergely
    • 1
    • 2
  • Frédéric Cuisinier
    • 4
  • Pascal Etienne
    • 1
    • 2
  1. 1.Laboratoire Charles Coulomb UMR 5221Université Montpellier 2MontpellierFrance
  2. 2.Laboratoire Charles Coulomb UMR 5221CNRSMontpellierFrance
  3. 3.MTA TTK MFABudapestHungary
  4. 4.Laboratoire de Biologie Santé et Nanosciences, EA4203Université Montpellier 1Montpellier Cedex 5France

Personalised recommendations