Skip to main content
Log in

A facile method for imparting superoleophobicity to polymer substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new method was presented to impart polymer substrate with superoleophobic properties. Aluminum/polymer composite was created by a hot-pressing process, and rough surface textures needed to establish superoleophobicity were created by HCl etching and boiling water treatment. After surface fluorination, the surface became super-repellent towards water and several organic liquids, such as hexadecane. The effect of geometrical structure on hydrophobicity and oleophobicity was investigated, and the result showed that the synergistic action of microterraces and nanoflakes played a key role in establishing oleophobicity. A waterfall/jet test demonstrated that the obtained surface can keep its superoleophobicity after a long time exposure to water. Moreover, the obtained surface did not lose the superoleophobicity after placing it under cold condition for 7 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Liu, X. Yao, L. Jiang, Chem. Soc. Rev. 39, 3240 (2008)

    Article  Google Scholar 

  2. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen, Science 318, 1618 (2007)

    Article  ADS  Google Scholar 

  3. A. Tuteja, W. Choi, G.H. McKinley, R.E. Cohen, M.F. Rubner, Mater. Res. Soc. Bull. 33, 752 (2008)

    Article  Google Scholar 

  4. D.A. Wang, X.L. Wang, X.J. Liu, F. Zhou, J. Phys. Chem. C 114, 9938 (2010)

    Article  Google Scholar 

  5. X. Zhang, F. Shi, J. Niu, Y.G. Jiang, Z.Q. Wang, J. Mater. Chem. 18, 621 (2008)

    Article  Google Scholar 

  6. X.M. Li, D. Reinhouldt, M. Grego-Calama, Chem. Soc. Rev. 36, 1350 (2007)

    Article  Google Scholar 

  7. L. Cao, T.P. Price, M. Weiss, D. Gao, Langmuir 24, 1640 (2008)

    Article  Google Scholar 

  8. C.W. Extrand, Langmuir 18, 7991 (2002)

    Article  Google Scholar 

  9. X.T. Zhu, Z.Z. Zhang, X.H. Xu, X.H. Men, J. Yang, X.Y. Zhou, Q.J. Xue, J. Colloid Interface Sci. 367, 443 (2012)

    Article  Google Scholar 

  10. A. Tuteja, W. Choi, J.M. Mabry, G.H. McKinley, R.E. Cohen, Proc. Natl. Acad. Sci. USA 105, 18200 (2008)

    Article  ADS  Google Scholar 

  11. W. Choi, A. Tuteja, S. Chhatre, J.M. Mabry, R.E. Cohen, G.H. McKinley, Adv. Mater. 21, 2190 (2009)

    Article  Google Scholar 

  12. S.S. Chhatre, W. Choi, A. Tuteja, K.C. Park, J.M. Mabry, G.H. McKinley, R.E. Cohen, Langmuir 26, 4027 (2010)

    Article  Google Scholar 

  13. S.S. Chhatre, A. Tuteja, W. Choi, A. Revaux, D. Smith, J.M. Mabry, G.H. McKinley, R.E. Cohen, Langmuir 25, 13625 (2009)

    Article  Google Scholar 

  14. T. Darmanin, F. Guittard, J. Am. Chem. Soc. 131, 7928 (2009)

    Article  Google Scholar 

  15. X.T. Zhu, Z.Z. Zhang, X.H. Xu, X.H. Men, J. Yang, X.Y. Zhou, Q.J. Xue, Langmuir 27, 14508 (2011)

    Article  Google Scholar 

  16. J. Yang, Z.Z. Zhang, X.H. Xu, X.H. Men, X.T. Zhu, X.Y. Zhou, New J. Chem. 35, 2422 (2011)

    Article  Google Scholar 

  17. Y. Goto, H. Takashima, K. Takishita, H. Sawada, J. Colloid Interface Sci. 362, 375 (2011)

    Article  Google Scholar 

  18. X. Deng, L. Mammen, H.J. Butt, D. Vollmer, Science 33, 67 (2012)

    Article  ADS  Google Scholar 

  19. A. Das, T.M. Schutzius, I.S. Bayer, C.M. Megaridis, Carbon 50, 1346 (2012)

    Article  Google Scholar 

  20. H. Bellanger, T. Darmanin, F. Guittard, Langmuir 28, 186 (2012)

    Article  Google Scholar 

  21. X. Yao, J. Gao, Y.L. Song, L. Jiang, Adv. Funct. Mater. 21, 4270 (2011)

    Article  Google Scholar 

  22. G.R.J. Artus, J. Zimmermann, F.A. Reifler, S.A. Brewer, S. Seeger, Appl. Surf. Sci. 258, 3835 (2012)

    Article  ADS  Google Scholar 

  23. T. Darmanin, F. Guittard, J. Mater. Chem. 19, 7130 (2009)

    Article  Google Scholar 

  24. A. Steele, I. Bayer, E. Loth, Nano Lett. 1, 501 (2009)

    Article  ADS  Google Scholar 

  25. C.T. Hsieh, F.L. Wu, W.Y. Chen, Mater. Chem. Phys. 121, 14 (2010)

    Article  Google Scholar 

  26. H.F. Meng, S.T. Wang, J.M. Xi, Z.Y. Tang, L. Jiang, J. Phys. Chem. C 112, 11454 (2008)

    Article  Google Scholar 

  27. A. Hozumi, B. Kim, T.J. McCarthy, Langmuir 25, 6834 (2009)

    Article  Google Scholar 

  28. K. Tadanaga, N. Katata, T. Minami, J. Am. Ceram. Soc. 80, 3213 (1997)

    Article  Google Scholar 

  29. S. Ren, S. Yang, Y. Zhao, T. Yu, X. Xiao, Surf. Sci. 546, 64 (2003)

    Article  ADS  Google Scholar 

  30. A.B.D. Cassie, S. Baxter, Faraday Soc. 40, 546 (1944)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation of China (grant no. 51002162) and the “Western Action Program.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaozhu Zhang or Xuehu Men.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 3.1 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, G., Zhang, Z., Zhu, X. et al. A facile method for imparting superoleophobicity to polymer substrates. Appl. Phys. A 114, 1129–1133 (2014). https://doi.org/10.1007/s00339-013-7660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7660-0

Keywords

Navigation