Skip to main content
Log in

Studies on highly resistive ZnO thin films grown by DC-discharge-assisted pulsed laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

It was found that by changing the substrate temperature from room temperature to ∼850 °C, ZnO thin films with widely varying resistivity values could be grown on sapphire substrates using DC-discharge-assisted pulsed laser deposition (PLD) in oxygen ambient. The resistivity of the film grown at room temperature was too high to measure using our existing setup. However, as the growth temperature was increased from 550 °C to 750 °C, the resistivity first decreased slowly from ∼14.0 to 4.4 Ω m and then dropped suddenly to get saturated at ∼2.0×10−3 Ω m as the growth temperature was further increased. In contrast to these, when there was no DC-discharge, the variation of resistivity for ZnO thin films grown by PLD was marginal up to the substrate temperature of ∼850 °C. The reason for these observations was found to be the combined effects of reduction in donor defect densities like oxygen vacancies and zinc interstitials, introduction of acceptor type defects like interstitial oxygen and zinc vacancies, and the resultant poor carrier mobility at lower growth temperatures. At higher growth temperatures (800 °C and above), the appearance of oxygen vacancies and increase in mobility due to better crystalline quality were found to be responsible for reducing the resistivity. The PL of these films had significant emission in the green and red regions of the spectrum due to the aforesaid defect related transitions. Such highly resistive and luminescent films might be suited for applications such as resistive RAM, UV-photo detector, TFT, piezoelectric, transparent phosphor, and broadband LED applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.E. Sernelius, K.-F. Berggren, Z.-C. Zin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)

    Article  ADS  Google Scholar 

  2. B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)

    Article  ADS  Google Scholar 

  3. K. Ellmer, J. Phys. D, Appl. Phys. 34, 3097–3108 (2001)

    Article  ADS  Google Scholar 

  4. Y. Ma, G.T. Du, T.P. Yang, D.L. Qiu, X. Zhang, H.J. Yang, Y.T. Zhang, B.J. Zhao, X.T. Yang, D.L. Liu, J. Cryst. Growth 255, 303 (2003)

    Article  ADS  Google Scholar 

  5. E. Guziewicz, M. Godlewski, T. Krajewski, Ł. Wachnicki, A. Szczepanik, K. Kopalko, A. Wójcik-Głodowska, E. Przeździecka, W. Paszkowicz, E. Łusakowska, P. Kruszewski, N. Huby, G. Tallarida, S. Ferrari, J. Appl. Phys. 105, 122413 (2009)

    Article  ADS  Google Scholar 

  6. S.B. Zhang, S.-H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  ADS  Google Scholar 

  7. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552–2555 (1999)

    Article  ADS  Google Scholar 

  8. F. Oba, S.R. Nishitani, S. Isotani, H. Adachi, I. Tanaka, J. Appl. Phys. 90, 824–828 (2001)

    Article  ADS  Google Scholar 

  9. B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. B 71, 301–305 (2000)

    Article  Google Scholar 

  10. J. Liu, S. Lee, Y.H. Ahn, J.-Y. Park, K.H. Koh, J. Phys. D, Appl. Phys. 42, 095401 (2009)

    Article  ADS  Google Scholar 

  11. S.T. Tan, X.W. Sun, J.L. Zhao, S. Iwan, Z.H. Cen, T.P. Chen, J.D. Ye, G.Q. Lo, D.L. Kwong, K.L. Teo, Appl. Phys. Lett. 93, 013506 (2008)

    Article  ADS  Google Scholar 

  12. L.M. Kukreja, P. Misra, J. Fallert, D.M. Phase, H. Kalt, J. Appl. Phys. 112, 013525 (2012)

    Article  ADS  Google Scholar 

  13. S. Choopun, R.D. Vispute, W. Noch, A. Balsamo, R.P. Sharma, T. Venkatesan, A. Iliadis, D.C. Look, Appl. Phys. Lett. 75, 3947 (1999)

    Article  ADS  Google Scholar 

  14. L.M. Kukreja, A.K. Das, P. Misra, Bull. Mater. Sci. 32, 247 (2009)

    Article  Google Scholar 

  15. P. Misra, A.K. Das, L.M. Kukreja, Phys. Status Solidi C 7, 1718 (2010)

    Article  ADS  Google Scholar 

  16. R.S. Ajimsha, K.A. Vanaja, M.K. Jayaraj, P. Misra, V.K. Dixit, L.M. Kukreja, Thin Solid Films 515, 7352 (2007)

    Article  ADS  Google Scholar 

  17. A. Furukawa, N. Ogasawara, R. Yokozawa, T. Tokunaga, Jpn. J. Appl. Phys. 47, 8799 (2008)

    Article  ADS  Google Scholar 

  18. Y.-S. Kim, C.H. Park, Phys. Rev. Lett. 102, 086403 (2009)

    Article  ADS  Google Scholar 

  19. A. Janotti, C.G. Van de Walle, Phys. Rev. B 76, 165202 (2007)

    Article  ADS  Google Scholar 

  20. M. Wilkens, Phys. Status Solidi A 2, 359–370 (1970)

    Article  ADS  Google Scholar 

  21. G.K. Williamson, W.H. Hall, Acta Metall. Mater. 1, 22 (1953)

    Article  Google Scholar 

  22. Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84, 3912 (1998)

    Article  ADS  Google Scholar 

  23. X.Q. Menga, D.Z. Shen, J.Y. Zhang, D.X. Zhao, Y.M. Lu, L. Dong, Z.Z. Zhang, Y.C. Liu, X.W. Fan, Solid State Commun. 135, 179 (2005)

    Article  ADS  Google Scholar 

  24. S.Y. Hu, Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W. Water, Appl. Surf. Sci. 254, 1578 (2008)

    Article  ADS  Google Scholar 

  25. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 2287 (2005)

    Article  ADS  Google Scholar 

  26. L. Wang, L.C. Giles, J. Appl. Phys. 94, 973 (2003)

    Article  ADS  Google Scholar 

  27. W. Shan, W. Walukiewicz, J.W. Ager, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)

    Article  ADS  Google Scholar 

  28. E. Gross, S. Permogorov, B. Razbirin, J. Phys. Chem. Solids 27, 1647 (1966)

    Article  ADS  Google Scholar 

  29. T. Monteiro, C. Boemare, M.J. Soares, E. Rita, E. Alves, J. Appl. Phys. 93, 8995 (2003)

    Article  ADS  Google Scholar 

  30. D.W. Hamby, D.A. Lucca, J.-K. Lee, M. Nastasi, Nucl. Instrum. Methods Phys. Res. B 242, 663–666 (2006)

    Article  ADS  Google Scholar 

  31. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Trallant, J.A. Voigt, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  32. K.C. Mishra, P.C. Schmidt, K.H. Johnson, B.G. DeBoer, J.K. Berkowitz, E.A. Dale, Phys. Rev. B 42, 1423 (1990)

    Article  ADS  Google Scholar 

  33. D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoç, Solid State Commun. 101, 643 (1997)

    Article  ADS  Google Scholar 

  34. D.C. Reynolds, D.C. Look, B. Jogai, J.E. Van Nostrand, R. Jones, J. Jenny, Solid State Commun. 106, 701 (1998)

    Article  Google Scholar 

  35. A.F. Kohan, G. Ceder, D. Morgan, C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000)

    Article  ADS  Google Scholar 

  36. T. Sekiguchi, N. Ohashi, Y. Terada, Jpn. J. Appl. Phys. 36, L289 (1997)

    Article  ADS  Google Scholar 

  37. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  38. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  39. X. Han, Y. Gao, J. Dai, C. Yu, Z. Wu, C. Chen, G. Fang, J. Phys. D, Appl. Phys. 43, 145102 (2010)

    Article  ADS  Google Scholar 

  40. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 34 (2000)

    Article  Google Scholar 

  41. H.-B. Fan, S.-Y. Yang, P.-F. Zhang, H.-Y. Wei, X.-L. Liu, C.-M. Jiao, Q.-S. Zhu, Y.-H. Chen, Z.-G. Wang, Chin. Phys. Lett. 24, 2108 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. B.N. Singh for his help in experiments. Some part of the present work was carried out at UGC-DAE CSR, Indore. We also thank Mr. Avanish Wadikar of UGC-DAE CSR, Indore, for his help in XPS measurements. We thank Miss. Sushmita Bhartiya for her help in AFM image processings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A.K., Misra, P., Kumar, R. et al. Studies on highly resistive ZnO thin films grown by DC-discharge-assisted pulsed laser deposition. Appl. Phys. A 114, 1119–1128 (2014). https://doi.org/10.1007/s00339-013-7653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7653-z

Keywords

Navigation