Porosity-moderated ultrafast electron transport in Au nanowire networks

Abstract

We demonstrate for first time the ultrafast properties of a newly formed porous Au nanostructure. The properties of the porous nanostructure are compared with those of a solid gold film using time-resolved optical spectroscopy. The experiments suggest that under the same excitation conditions the relaxation dynamics are slower in the former. Our observations are evaluated by simulations based on a phenomenological rate equation model. The impeded dynamics has been attributed to the porous nature of the structure in the networks, which results in reduced efficiency during the dissipation of the laser-deposited energy. Importantly, the porosity of the complex three-dimensional nanostructure is introduced as a geometrical control parameter of its ultrafast electron transport.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  2. 2.

    S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000)

    Article  Google Scholar 

  3. 3.

    Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  4. 4.

    I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7, 409 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    R. Narayanan, M.A. El-Sayed, Nano Lett. 4, 1343 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    J. Hohlfeld, J.G. Muller, S.S. Wellershoff, E. Matthias, Appl. Phys. B 64, 387 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    C. Voisin, D. Christofilos, P.A. Loukakos, N. Del Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, Phys. Rev. B 69, 195416 (2004)

    ADS  Article  Google Scholar 

  9. 9.

    C. Voisin, N. Del Fatti, D. Christofilos, F. Vallee, J. Phys. Chem. B 105, 2264 (2001)

    Article  Google Scholar 

  10. 10.

    S. Stagira, M. Nisoli, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, R. Kofman, Chem. Phys. 251, 259 (2000)

    Article  Google Scholar 

  11. 11.

    A. Stella, M. Nisoli, S. DeSilvestri, O. Svelto, G. Lanzani, P. Cheyssac, R. Kofman, Phys. Rev. B 53, 15497 (1996)

    ADS  Article  Google Scholar 

  12. 12.

    M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.S. Wellershoff, J. Hohlfeld, Phys. Rev. B 61, 1101 (2000)

    ADS  Article  Google Scholar 

  13. 13.

    S. Link, D.J. Hathcock, B. Nikoobakht, M.A. El-Sayed, Adv. Mater. 15, 393 (2003)

    Article  Google Scholar 

  14. 14.

    L. Manna, R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, Phys. Rep. 501, 75 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    G. Ramanath, J. D’Arcy-Gall, T. Maddanimath, A.V. Ellis, P.G. Ganesan, R. Goswami, A. Kumar, K. Vijayamohanan, Langmuir 20, 5583 (2004)

    Article  Google Scholar 

  17. 17.

    A.G. Kanaras, C. Sonnichsen, H.T. Liu, A.P. Alivisatos, Nano Lett. 5, 2164 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    H.A. Day, D. Bartczak, N. Fairbairn, E. McGuire, M. Ardakani, A.E. Porter, A.G. Kanaras, CrystEngComm 12, 4312 (2010)

    Article  Google Scholar 

  19. 19.

    Y. Lu, J.Y. Huang, C. Wang, S.H. Sun, J. Lou, Nat. Nanotechnol. 5, 218 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    A. Murugadoss, A. Chattopadhyay, J. Phys. Chem. C 112, 11265 (2008)

    Article  Google Scholar 

  21. 21.

    M. Chirea, A. Freitas, B.S. Vasile, C. Ghitulica, C.N. Pereira, F. Silva, Langmuir 27, 3906 (2011)

    Article  Google Scholar 

  22. 22.

    L.M. Liz-Marzan, M. Yang, R. Alvarez-Puebla, H.S. Kim, P. Aldeanueva-Potel, N.A. Kotov, Nano Lett. 10, 4013 (2010)

    ADS  Article  Google Scholar 

  23. 23.

    A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B 16, 637 (1999)

    ADS  Article  Google Scholar 

  24. 24.

    J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  25. 25.

    N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka, A. Nakamura, Chem. Phys. 251, 215 (2000)

    Article  Google Scholar 

  26. 26.

    W.Q. Wang, W.S. Liang, C.Y. Geng, Nanoscale Res. Lett. 4, 684 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    C. Wang, Y. Wei, H. Jiang, S. Sun, Nano Lett. 10, 2121 (2010)

    ADS  Article  Google Scholar 

  28. 28.

    Q. Yuan, X. Wang, Nanoscale 2, 2328 (2010)

    ADS  Article  Google Scholar 

  29. 29.

    C.-K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    ADS  Article  Google Scholar 

  30. 30.

    R.H. Doremus, J. Chem. Phys. 40, 2389 (1964)

    ADS  Article  Google Scholar 

  31. 31.

    C.-K. Sun, F. Vallee, L. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993)

    ADS  Article  Google Scholar 

  32. 32.

    S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)

    ADS  Article  Google Scholar 

  33. 33.

    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, 1680 (1987)

    ADS  Article  Google Scholar 

  34. 34.

    M. Perner, S. Gresilon, J. Maerz, G. von Plessen, J. Feldmann, J. Porstendorfer, K.-J. Berg, G. Berg, Phys. Rev. Lett. 85, 792 (2000)

    ADS  Article  Google Scholar 

  35. 35.

    C.A. Paddock, G.L. Eesley, J. Appl. Phys. 60, 285 (1986)

    ADS  Article  Google Scholar 

  36. 36.

    H.E. Elsayedali, T. Juhasz, G.O. Smith, W.E. Bron, Phys. Rev. B 43, 4488 (1991)

    ADS  Article  Google Scholar 

  37. 37.

    S.L. Logunov, T.S. Ahmadi, M.A. El-Sayed, J.T. Khoury, R.L. Whetten, J. Phys. Chem. B 101, 3713 (1997)

    Article  Google Scholar 

  38. 38.

    S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Phys. Rev. B 61, 6086 (2000)

    ADS  Article  Google Scholar 

  39. 39.

    L.G. Schulz, J. Opt. Soc. Am. 44, 357 (1954)

    ADS  Article  Google Scholar 

  40. 40.

    Tables of Physical & Chemical Constants 16th edn. (1995) 2.3.7 Thermal conductivities. Kaye & Laby Online. Version 1.0 (2005) www.kayelaby.npl.co.uk

  41. 41.

    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Ultraviolet Laser Facility operating at IESL-FORTH with support from the EC project “Laserlab-Europe II” (FP7-Infrastructures-2008-1, Grant Agreement No: 228334). The authors thank A. Manousaki and L. Papoutsakis for their expert assistance in obtaining SEM and XRD data and the European Commission for financial support through the Marie-Curie Transfer of Knowledge program NANOTAIL (Grant no. MTKD-CT-2006-042459). AGK thanks the University of Southampton (nanousrg) for financial support and the Research Council UK (RCUK) for a Roberts fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Panagiotis A. Loukakos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magoulakis, E., Kostopoulou, A., Arvanitakis, G.N. et al. Porosity-moderated ultrafast electron transport in Au nanowire networks. Appl. Phys. A 111, 711–717 (2013). https://doi.org/10.1007/s00339-013-7647-x

Download citation

Keywords

  • Probe Beam
  • Plasmon Resonance Peak
  • Electronic Heat Capacity
  • Electron Occupation
  • Ultrafast Dynamic