Skip to main content
Log in

Porosity-moderated ultrafast electron transport in Au nanowire networks

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate for first time the ultrafast properties of a newly formed porous Au nanostructure. The properties of the porous nanostructure are compared with those of a solid gold film using time-resolved optical spectroscopy. The experiments suggest that under the same excitation conditions the relaxation dynamics are slower in the former. Our observations are evaluated by simulations based on a phenomenological rate equation model. The impeded dynamics has been attributed to the porous nature of the structure in the networks, which results in reduced efficiency during the dissipation of the laser-deposited energy. Importantly, the porosity of the complex three-dimensional nanostructure is introduced as a geometrical control parameter of its ultrafast electron transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005)

    Article  Google Scholar 

  2. S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000)

    Article  Google Scholar 

  3. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  4. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    Article  ADS  Google Scholar 

  5. I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Nano Lett. 7, 409 (2006)

    Article  ADS  Google Scholar 

  6. R. Narayanan, M.A. El-Sayed, Nano Lett. 4, 1343 (2004)

    Article  ADS  Google Scholar 

  7. J. Hohlfeld, J.G. Muller, S.S. Wellershoff, E. Matthias, Appl. Phys. B 64, 387 (1997)

    Article  ADS  Google Scholar 

  8. C. Voisin, D. Christofilos, P.A. Loukakos, N. Del Fatti, F. Vallee, J. Lerme, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, Phys. Rev. B 69, 195416 (2004)

    Article  ADS  Google Scholar 

  9. C. Voisin, N. Del Fatti, D. Christofilos, F. Vallee, J. Phys. Chem. B 105, 2264 (2001)

    Article  Google Scholar 

  10. S. Stagira, M. Nisoli, S. De Silvestri, A. Stella, P. Tognini, P. Cheyssac, R. Kofman, Chem. Phys. 251, 259 (2000)

    Article  Google Scholar 

  11. A. Stella, M. Nisoli, S. DeSilvestri, O. Svelto, G. Lanzani, P. Cheyssac, R. Kofman, Phys. Rev. B 53, 15497 (1996)

    Article  ADS  Google Scholar 

  12. M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.S. Wellershoff, J. Hohlfeld, Phys. Rev. B 61, 1101 (2000)

    Article  ADS  Google Scholar 

  13. S. Link, D.J. Hathcock, B. Nikoobakht, M.A. El-Sayed, Adv. Mater. 15, 393 (2003)

    Article  Google Scholar 

  14. L. Manna, R. Krahne, G. Morello, A. Figuerola, C. George, S. Deka, Phys. Rep. 501, 75 (2011)

    Article  ADS  Google Scholar 

  15. X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000)

    Article  ADS  Google Scholar 

  16. G. Ramanath, J. D’Arcy-Gall, T. Maddanimath, A.V. Ellis, P.G. Ganesan, R. Goswami, A. Kumar, K. Vijayamohanan, Langmuir 20, 5583 (2004)

    Article  Google Scholar 

  17. A.G. Kanaras, C. Sonnichsen, H.T. Liu, A.P. Alivisatos, Nano Lett. 5, 2164 (2005)

    Article  ADS  Google Scholar 

  18. H.A. Day, D. Bartczak, N. Fairbairn, E. McGuire, M. Ardakani, A.E. Porter, A.G. Kanaras, CrystEngComm 12, 4312 (2010)

    Article  Google Scholar 

  19. Y. Lu, J.Y. Huang, C. Wang, S.H. Sun, J. Lou, Nat. Nanotechnol. 5, 218 (2010)

    Article  ADS  Google Scholar 

  20. A. Murugadoss, A. Chattopadhyay, J. Phys. Chem. C 112, 11265 (2008)

    Article  Google Scholar 

  21. M. Chirea, A. Freitas, B.S. Vasile, C. Ghitulica, C.N. Pereira, F. Silva, Langmuir 27, 3906 (2011)

    Article  Google Scholar 

  22. L.M. Liz-Marzan, M. Yang, R. Alvarez-Puebla, H.S. Kim, P. Aldeanueva-Potel, N.A. Kotov, Nano Lett. 10, 4013 (2010)

    Article  ADS  Google Scholar 

  23. A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B 16, 637 (1999)

    Article  ADS  Google Scholar 

  24. J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  25. N. Del Fatti, F. Vallee, C. Flytzanis, Y. Hamanaka, A. Nakamura, Chem. Phys. 251, 215 (2000)

    Article  Google Scholar 

  26. W.Q. Wang, W.S. Liang, C.Y. Geng, Nanoscale Res. Lett. 4, 684 (2009)

    Article  ADS  Google Scholar 

  27. C. Wang, Y. Wei, H. Jiang, S. Sun, Nano Lett. 10, 2121 (2010)

    Article  ADS  Google Scholar 

  28. Q. Yuan, X. Wang, Nanoscale 2, 2328 (2010)

    Article  ADS  Google Scholar 

  29. C.-K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    Article  ADS  Google Scholar 

  30. R.H. Doremus, J. Chem. Phys. 40, 2389 (1964)

    Article  ADS  Google Scholar 

  31. C.-K. Sun, F. Vallee, L. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993)

    Article  ADS  Google Scholar 

  32. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)

    Article  ADS  Google Scholar 

  33. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, 1680 (1987)

    Article  ADS  Google Scholar 

  34. M. Perner, S. Gresilon, J. Maerz, G. von Plessen, J. Feldmann, J. Porstendorfer, K.-J. Berg, G. Berg, Phys. Rev. Lett. 85, 792 (2000)

    Article  ADS  Google Scholar 

  35. C.A. Paddock, G.L. Eesley, J. Appl. Phys. 60, 285 (1986)

    Article  ADS  Google Scholar 

  36. H.E. Elsayedali, T. Juhasz, G.O. Smith, W.E. Bron, Phys. Rev. B 43, 4488 (1991)

    Article  ADS  Google Scholar 

  37. S.L. Logunov, T.S. Ahmadi, M.A. El-Sayed, J.T. Khoury, R.L. Whetten, J. Phys. Chem. B 101, 3713 (1997)

    Article  Google Scholar 

  38. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, Phys. Rev. B 61, 6086 (2000)

    Article  ADS  Google Scholar 

  39. L.G. Schulz, J. Opt. Soc. Am. 44, 357 (1954)

    Article  ADS  Google Scholar 

  40. Tables of Physical & Chemical Constants 16th edn. (1995) 2.3.7 Thermal conductivities. Kaye & Laby Online. Version 1.0 (2005) www.kayelaby.npl.co.uk

  41. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Ultraviolet Laser Facility operating at IESL-FORTH with support from the EC project “Laserlab-Europe II” (FP7-Infrastructures-2008-1, Grant Agreement No: 228334). The authors thank A. Manousaki and L. Papoutsakis for their expert assistance in obtaining SEM and XRD data and the European Commission for financial support through the Marie-Curie Transfer of Knowledge program NANOTAIL (Grant no. MTKD-CT-2006-042459). AGK thanks the University of Southampton (nanousrg) for financial support and the Research Council UK (RCUK) for a Roberts fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis A. Loukakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magoulakis, E., Kostopoulou, A., Arvanitakis, G.N. et al. Porosity-moderated ultrafast electron transport in Au nanowire networks. Appl. Phys. A 111, 711–717 (2013). https://doi.org/10.1007/s00339-013-7647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7647-x

Keywords

Navigation