Applied Physics A

, Volume 111, Issue 4, pp 1031–1036 | Cite as

Effects of fibre-surface morphology on the mechanical properties of Porifera-inspired rubber-matrix composites

  • Parvez Alam
  • Daniela Graf Stillfried
  • Jessika Celli
  • Martti Toivakka
Rapid communication


In this paper, mineralised organic fibre morphologies, inspired by the structures of Porifera (sponges) are correlated to the mechanical performance of fibre reinforced rubbers. The mineralised structures are rich in calcium carbonate and silica. These compounds nucleate and precipitate on the fibre surfaces yielding different morphologies as a function of mineral ion concentrations. Smaller mineralised precipitates manifestly improve the mechanical performance of composites while thicker precipitates enveloping the fibres give rise to inferior properties. Mechanisms and evidenced reasoning for these differences are reported herein.


Calcium Carbonate Fibre Surface Strain Energy Density Natural Fibre Vaterite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The primary author, Parvez Alam, is extremely grateful to the marine biology students at Gadjah Mada University, Yogyakarta, Indonesia, for their invaluable help in safely gathering the marine organisms used in this study. The primary author is also grateful to the Ella and George Ehrnrooth Foundation, Finland, for their financial support in this project.


  1. 1.
    S. Weiner, P.M. Dove, An overview of biomineralisation processes and the problem of the vital effect, in Biomineralization, ed. by P.M. Dove, J.J. Yoreo, S. Weiner. Reviews in Mineralogy and Geochemistry, vol. 54 (2003). Series ed. J.J. Rosso. Chapter 1 Google Scholar
  2. 2.
    F.H. Wilt, Biomineralization of the spicules of sea urchin embryos. Zool. Sci. 19, 253–261 (2002) CrossRefGoogle Scholar
  3. 3.
    H.A. Lowenstam, S. Weiner, On Biomineralisation (Oxford University Press, New York, 1989) Google Scholar
  4. 4.
    H. Lowenstam, L. Margulis, Calcium regulation and the appearance of calcareous skeletons in the fossil record, in The Mechanisms of Biomineralisation in Animals and Plants, ed. by M. Omori, N. Eatabe (Tokai University Press, Tokyo, 1980), pp. 289–300 Google Scholar
  5. 5.
    K. Simkiss, K. Wilbur, Biomineralisation: Cell Biology and Mineral Deposition (Academic Press, San Diego, 1989) Google Scholar
  6. 6.
    M.J. Berridge, M.D. Bootman, P. Lipp, Calcium—a life and death signal. Nature 385, 546–548 (1998) Google Scholar
  7. 7.
    L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralisation. Adv. Mater. 15, 959–970 (2003) CrossRefGoogle Scholar
  8. 8.
    E. Beniash, J. Aizenberg, L. Addadi, S. Weiner, Amorphous calcium carbonate transforms into calcite during sea-urchin larval spicule growth. Proc. R. Soc. Lond. B, Biol. Sci. 264, 461–465 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    I.M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor for aragonite. J. Exp. Zool. 293, 478–491 (2002) CrossRefGoogle Scholar
  10. 10.
    H.A. Lowenstam, Minerals formed by organisms. Science 211, 1126–1131 (1981) ADSCrossRefGoogle Scholar
  11. 11.
    S. Mann, Mineralisation in biological systems. Struct. Bond. 54, 125–174 (1983) CrossRefGoogle Scholar
  12. 12.
    J.J. De Yoreo, P.G. Vekilov, Principles of crystal nucleation and growth, in Biomineralization, ed. by P.M. Dove, J.J. Yoreo, S. Weiner. Reviews in Mineralogy and Geochemistry, vol. 54 (2003). Series ed. J.J. Rosso. Chapter 3 Google Scholar
  13. 13.
    A.H. Heuer, D.J. Fink, V.J. Laraia, J.L. Arias, P.D. Calvert, K. Kendall, G.L. Messing, J. Blackwell, P.C. Rieke, D.H. Thompson, A.P. Wheeler, A. Veis, A.I. Caplan, Innovative materials processing strategies: a biomimetic approach. Science 255, 1098 (1992) ADSCrossRefGoogle Scholar
  14. 14.
    H. Cheung, M. Ho, K. Lau, F. Cardona, D. Hui, Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites, Part B, Eng. 40, 655–663 (2009) CrossRefGoogle Scholar
  15. 15.
    H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of natural fibre reinforced polymer composites. Composites, Part B, Eng. 42, 856–873 (2011) CrossRefGoogle Scholar
  16. 16.
    A.K. Mohanty, A. Wibowo, M. Misra, L.T. Drzal, Effect of process engineering on the performance of natural fibre reinforced cellulose acetate biocomposites. Composites, Part A, Appl. Sci. Manuf. 35, 363–370 (2004) CrossRefGoogle Scholar
  17. 17.
    S.V. Joshi, L.T. Drzal, A.K. Mohanty, S. Arora, Are natural fibre composites environmentally superior to glass fibre reinforced composites? Composites, Part A, Appl. Sci. Manuf. 35, 371–376 (2004) CrossRefGoogle Scholar
  18. 18.
    H.L. Bos, The Potential of Flax Fibres as Reinforcement for Composite Materials (University Press Facilities, Eindhoven, 2004) Google Scholar
  19. 19.
    M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9, 1643–1651 (2008) CrossRefGoogle Scholar
  20. 20.
    X. Liu, L. Zhang, Y. Wang, C. Guo, E. Wang, Biomimetic crystallisation of unusual macroporous calcium carbonate spherules in the presence of phosphatidylglycerol vesicles. Cryst. Growth Des. 8, 759–762 (2008) CrossRefGoogle Scholar
  21. 21.
    L. Qi, J. Li, J. Ma, Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv. Mater. 14, 300–303 (2002) CrossRefGoogle Scholar
  22. 22.
    J. Yu, J.C. Yu, L. Zhang, X. Wanga, L. Wua, Facile fabrication and characterisation of hierarchically porous calcium carbonate microspheres. Chem. Commun. 2004, 2414–2415 (2004) CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, D. Gao, H. Zhao, C. Xie, G. Guan, D. Wang, S. Yu, Biomimetic assembly of polypeptide-stabilised CaCO3 nanoparticles. J. Phys. Chem. B 110, 8613–8618 (2006) CrossRefGoogle Scholar
  24. 24.
    B. Cheng, W. Cai, J. Yu, DNA-mediated morphosynthesis of calcium carbonate particles. J. Colloid Interface Sci. 352, 43–49 (2010) CrossRefGoogle Scholar
  25. 25.
    D. Liu, M.Z. Yates, Formation of rod-shaped calcite crystals by microemulsion-based synthesis. Langmuir 22, 5566–5569 (2006) CrossRefGoogle Scholar
  26. 26.
    I.W. Kim, R.E. Robertson, R. Zand, Effects of some non-ionic polymeric additives on the crystallisation of calcium carbonate. Cryst. Growth Des. 5, 513–522 (2005) CrossRefGoogle Scholar
  27. 27.
    X. Zhang, Z. Zhang, Y. Yan, A facile surfactant-assisted approach to the synthesis of urchin-shaped aragonite micropatterns. J. Cryst. Growth 274, 550–554 (2005) ADSCrossRefGoogle Scholar
  28. 28.
    H. Cölfen, L. Qi, A systematic examination of the morphogenesis of calcium carbonate in the presence of a double-hydrophilic block copolymer. Chem. Eur. J. 7, 110–116 (2001) CrossRefGoogle Scholar
  29. 29.
    D. Ren, Q. Feng, X. Bourrat, Effects of additives and templates on calcium carbonate mineralisation in vitro. Micron 42, 228–245 (2010) CrossRefGoogle Scholar
  30. 30.
    P. Alam, A mixtures’ model for porous particle-polymer composites. Mech. Res. Commun. 37, 389–393 (2010) CrossRefGoogle Scholar
  31. 31.
    J. Kucera, E. Nezbedova, Poly(propylene) with micro-fillers—the way of enhancement of toughness. Polym. Adv. Technol. 18, 112–116 (2007) CrossRefGoogle Scholar
  32. 32.
    A. Pasila, The dry-line method in bast fibre production. Ph.D. thesis, University of Helsinki, 2004 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Parvez Alam
    • 1
  • Daniela Graf Stillfried
    • 2
  • Jessika Celli
    • 3
  • Martti Toivakka
    • 1
  1. 1.Centre for Functional MaterialsAbo Akademi UniversityTurkuFinland
  2. 2.Department of Chemical EngineeringSimon Bolivar UniversityCaracasVenezuela
  3. 3.Department of Production EngineeringSimon Bolivar UniversityCaracasVenezuela

Personalised recommendations