Skip to main content
Log in

Conductive Atomic Force Microscopy (C-AFM) observation of conducting nanofilaments formation in GeSbTe phase change materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GST (GeSbTe) thin films were deposited on glass substrates by electron beam evaporation; Ni was used as the top and bottom electrodes. The IV (current–voltage) characteristic of the phase change memory (PCM) cell was measured; results showed an electrical threshold switching characteristic for the sample with a threshold voltage of 3.08 V. The threshold switching is attributed to the formation of conductive filaments in the amorphous matrix.

Current-voltage spectra which were obtained by C-AFM show that the GST thin film switching from amorphous to the crystalline phase occurs at 1.51 V. C-AFM was used to fabricate crystalline nanoarrays on the sample surface and examine the electrical properties of arrays. In the IV measurements by C-AFM, when the applied voltage is higher than threshold voltage, conducting nanofilaments with average sizes of 15–60 nm were formed and crystallized spots with current signals were observed. Different times of IV spectroscopies were applied on thin films to investigate the electrical properties of films during the phase change process. C-AFM results show that as the times of IV spectroscopies increased, the morphology of crystallized spots changed from bump to pit; the sizes of conductive nanofilaments and detected current signals increased. These results can be attributed to the energy induced by Joule heating dissipated to surrounding films increases with the increasing times of IV spectroscopies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)

    Article  ADS  Google Scholar 

  3. N. Yamada, T. Matsunaga, J. Appl. Phys. 88, 7020 (2000)

    Article  ADS  Google Scholar 

  4. S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu, M. Takata, Appl. Phys. Lett. 89, 201910 (2006)

    Article  ADS  Google Scholar 

  5. B.-S. Lee, J.R. Abelson, S.G. Bishop, D.-H. Kang, B.-K. Cheong, K.-B. Kim, J. Appl. Phys. 97, 093509 (2005)

    Article  ADS  Google Scholar 

  6. J. Siegel, A. Schropp, J. Solis, C.N. Afonso, M. Wuttig, Appl. Phys. Lett. 84, 2250 (2004)

    Article  ADS  Google Scholar 

  7. J. Rocca, M. Fontana, B. Arcondo, J. Alloys Compd. 536S, S516–S521 (2012)

    Article  Google Scholar 

  8. N. Ohshima, J. Appl. Phys. 79, 11 (1996)

    Article  Google Scholar 

  9. Y. Lin, M.H. Hong, G.X. Chen, C.S. Lim, Z.B. Wang, L.S. Tan, L.P. Shi, T.C. Chong, J. Alloys Compd. 449, 253–257 (2008)

    Article  Google Scholar 

  10. H. Kado, T. Tohda, Appl. Phys. Lett. 66, 2961 (1995)

    Article  ADS  Google Scholar 

  11. K. Sugawara, T. Gotoh, K. Tanaka, Appl. Phys. Lett. 79, 1549 (2001)

    Article  ADS  Google Scholar 

  12. T. Gotoh, K. Sugawara, K. Tanaka, J. Non-Cryst. Solids 299–302, 968–972 (2002)

    Article  Google Scholar 

  13. M. Fadel, N.A. Hegab, I.S. Yahia, A.M. Salem, A.S. Farid, J. Alloys Compd. 509, 7663–7670 (2011)

    Article  Google Scholar 

  14. S. Chen, J.Y. Huang, Z. Wang, K. Kempa, G. Chen, Z.F. Ren, Appl. Phys. Lett. 87, 263107 (2005)

    Article  ADS  Google Scholar 

  15. M. Hummelgard, R. Zhang, T. Carlberg, D. Vengust, D. Dvorsek, D. Mihailovic, H. Olin, Nanotechnology 21, 165704 (2010)

    Article  ADS  Google Scholar 

  16. B.J. Kooi, J.Th.M. De Hosson, J. Appl. Phys. 95, 4714 (2004)

    Article  ADS  Google Scholar 

  17. B.J. Kooi, W.M.G. Groot, J.Th.M. De Hosson, J. Appl. Phys. 95, 924 (2004)

    Article  ADS  Google Scholar 

  18. C.H. Chu, M.L. Tseng, C.D. Shiue, S.W. Chen, H.-P. Chiang, M. Mansuripur, D.P. Tsai, Opt. Express 19, 12652 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF of China (Nos. 61036001 and 60976001), the International Cooperation Program of Jiangsu Province (No. BZ2010068), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the State Key Program for Basic Research of China (No. 2013CB632101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, F., Xu, L., Fang, L. et al. Conductive Atomic Force Microscopy (C-AFM) observation of conducting nanofilaments formation in GeSbTe phase change materials. Appl. Phys. A 112, 663–667 (2013). https://doi.org/10.1007/s00339-013-7623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7623-5

Keywords

Navigation