Applied Physics A

, Volume 114, Issue 2, pp 529–536 | Cite as

Structural, electronic and magnetic properties of C59Ir, C58Ir2, and C69Ir heterofullerene nano-cages: first principles study

Article

Abstract

We studied the structural, electronic, and magnetic properties of C59Ir, C58Ir2, and C69Ir heterofullerenes by employing density functional theory and the generalized gradient approximation. There are six distinct isomers of C58Ir2 with high probability to form stable structures. The most stable structure of the C69Ir heterofullerene was investigated by comparing the iridium binding energies at the different atomic sites on the D5h C70 cage. There is a strong hybridization between the atomic orbitals of the iridium and those of the carbon atoms, leading to the spin quenching of the iridium atoms in the most stable C58Ir2 heterofullerene.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C.O. Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985) ADSCrossRefGoogle Scholar
  2. 2.
    W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990) ADSCrossRefGoogle Scholar
  3. 3.
    J.R. Heath, S.C.O. Brien, Q. Zhang, Y. Liu, R.F. Curl, H.W. Kroto, F.K. Tittle, R.E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985) CrossRefGoogle Scholar
  4. 4.
    R. Tellgmann, N. Krawez, S.-H. Li, I.V. Hertel, E.E.B. Campbell, Nature 382, 407 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    S. Nagao, T. Kurikawa, K. Miyajima, A. Nakajima, K. Kaya, J. Phys. Chem. A 102, 4495 (1998) CrossRefGoogle Scholar
  6. 6.
    T. Guo, C. Jin, R.E. Smalley, J. Phys. Chem. 95, 4948 (1991) CrossRefGoogle Scholar
  7. 7.
    J.C. Hummelen, B. Knight, J. Pavlovich, R. Gonzalez, F. Wudl, Science 269, 1554 (1995) ADSCrossRefGoogle Scholar
  8. 8.
    C. Ray, M. Peliarin, J.L. Lerme, J.L. Vialle, M. Broyer, X. Blase, P. Melinon, P. Keghelian, A. Perez, Phys. Rev. Lett. 80, 5365 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Stry, J.F. Garvey, Chem. Phys. Lett. 243, 199 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    C. Moschel, M. Jansen, Z. Anorg. Allg. Chem. 625, 175 (1999) CrossRefGoogle Scholar
  11. 11.
    T. Ohtsuki, K. Ohno, K. Shiga, Y. Kawazoe, Y. Maruyama, K. Masumoto, J. Chem. Phys. 112, 2834 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    W. Branz, I.M.L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, T.P. Martin, J. Chem. Phys. 109, 3425 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996) Google Scholar
  14. 14.
    J. Lu, L. Ge, X.W. Zhang, X. Zaho, Mod. Phys. Lett. B 14, 23 (2000) ADSCrossRefGoogle Scholar
  15. 15.
    M.R. Manna, R.H. Xie, W.H. Smith Jr., Chem. Phys. Lett. 387, 101 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Liang, Z. Shang, X. Xu, X. Zhao, J. Mol. Struct., Theochem 728, 225 (2005) CrossRefGoogle Scholar
  17. 17.
    Z. Chen, X. Zhao, A. Tang, J. Phys. Chem. A 103, 10961 (1999) CrossRefGoogle Scholar
  18. 18.
    W. Andreoni, A. Curioni, K. Holczer, K. Prassidess, N. Kesha-var, J.C. Hummelen, F. Wadl, J. Am. Chem. Soc. 118, 11335 (1996) CrossRefGoogle Scholar
  19. 19.
    A. Hirsch, B. Nuber, Acc. Chem. Res. 32, 795 (1999) CrossRefGoogle Scholar
  20. 20.
    J.C. Hummelen, C. Bellavia-Lund, F. Wudl, Top. Curr. Chem. 199, 93 (1999) CrossRefGoogle Scholar
  21. 21.
    M.B. Javan, N. Tajabor, M. Behdani, M. Rezaei-Roknabadi, Physica B 405, 4937 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    G. Li, R.F. Sabirianov, J. Lu, X.C. Zeng, W.N. Mei, J. Chem. Phys. 128, 074304 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    I.M.L. Billas, W. Branz, N. Malinowski, F. Tast, N. Heinebrodt, T.P. Martin, C. Massobriot, M. Boerott, M. Parrinello, Nanostruct. Mater. 12, 1071 (1999) CrossRefGoogle Scholar
  24. 24.
    Z.F. Chen, K.Q. Ma, Y.M. Pan, X.Z. Zhao, A.C. Tang, Can. J. Chem. 77, 291 (1999) CrossRefGoogle Scholar
  25. 25.
    N. Kurita, K. Kobayashi, H. Kumahora, K. Tago, Phys. Rev. B 48, 7 (1993) Google Scholar
  26. 26.
    H.P. Wu, K.U. Deng, J.L. Yang, J. Nanjing Univ. Sci. Technol. 28, 194 (2004) Google Scholar
  27. 27.
    C. Tang, K. Deng, W. Tan, Y. Yuan, Y. Lau, J. Yang, X. Wang, Eur. Phys. J. D 43, 125 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    A. Hayashi, Y. Xie, J.M. Poblet, J.M. Campanera, C.B. Lebrilla, A.L. Balch, J. Phys. Chem. A 108, 2192 (2004) CrossRefGoogle Scholar
  29. 29.
    D. Changgen, Y. Jinlong, H. Rongsheng, W. Kelin, Phys. Rev. A 64, 043201 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  31. 31.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  32. 32.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    T. Ozaki, H. Kino, Phys. Rev. B 69, 195113 (2004) ADSCrossRefGoogle Scholar
  34. 34.
    T. Ozaki, H. Kino, Phys. Rev. B 72, 045121 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    K. Hedberg, L. Hedberg, D.S. Bethune, C.A. Brown, H.C. Dron, R.D. Johnson, M. Devries, Science 254, 410 (1991) ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Lee, R.J. Nicholls, D. Nguyen-Manh, D.G. Pettifor, G.A.D. Briggs, S. Lazar, D.A. Pankhurst, D.J.H. Cockayne, Chem. Phys. Lett. 404, 206 (2005) ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Nikolaev, T.J.S. Dennis, K. Prassides, A.K. Soper, Chem. Phys. Lett. 223, 143 (1994) ADSCrossRefGoogle Scholar
  38. 38.
    K. Fukui, Acc. Chem. Res. 4, 57 (1971) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesGolestan UniversityGorganIran
  2. 2.Department of Engineering, Minoodasht BranchIslamic Azad UniversityMinoodashtIran

Personalised recommendations