Applied Physics A

, Volume 111, Issue 1, pp 69–74 | Cite as

New markers to identify the provenance of lapis lazuli: trace elements in pyrite by means of micro-PIXE

  • A. Re
  • D. Angelici
  • A. Lo Giudice
  • E. Maupas
  • L. Giuntini
  • S. Calusi
  • N. Gelli
  • M. Massi
  • A. Borghi
  • L. M. Gallo
  • G. Pratesi
  • P. A. Mandò
Article

Abstract

Lapis lazuli has been used for glyptics and carving since the fifth millennium BC to produce jewels, amulets, seals, inlays, etc; the identification of the origin of the stone used for carving artworks may be valuable for reconstructing old trade routes. Since ancient lapis lazuli art objects are precious, only non-destructive techniques can be used to identify their provenance, and ion beam analysis (IBA) techniques allow us to characterise this stone in a fully non-invasive way. In addition, by using an ion microprobe, we have been able to focus the analysis on single crystals, as their typical dimensions may range from a few microns to hundreds of microns.

Provenance markers, identified in previous IBA studies and already presented elsewhere, were based on the presence/absence of mineral phases, on the presence/quantity of trace elements inside a phase and on characteristic features of the luminescence spectra. In this work, a systematic study on pyrite crystals, a common accessory mineral in lapis lazuli, was carried out, following a multi-technique approach: optical microscopy and SEM-EDX to select crystals for successive trace element micro-PIXE measurements at two Italian facilities, the INFN Laboratori Nazionali di Legnaro and the INFN LABEC laboratory in Firenze. The results of this work allowed us to obtain new markers for lapis lazuli provenance identification.

Notes

Acknowledgements

This work was carried out in the framework of the INFN experiment ‘FARE’ and supported by the TEMART project of Regione Toscana. Thanks are due to Prof. Sara Ferri (President of the Accademia dei Fisiocritici) and to Dr. Ferruccio Farsi who kindly provided some of the analysed specimens. The authors are indebted to Ing. Leonardo La Torre for his skilful assistance in microbeam operation at the INFN Laboratori Nazionali di Legnaro.

References

  1. 1.
    P. Ballirano, A. Maras, Am. Mineral. 91, 997–1005 (2006) CrossRefGoogle Scholar
  2. 2.
    J. Zöldföldi et al., in Proceedings of the 34th Intern. Symp. on Archaeometry, Spain (2004), pp. 353–360 Google Scholar
  3. 3.
    T. Calligaro, Y. Coquinot, L. Pichon, B. Moignard, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 269, 2364–2372 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    M. Favaro et al., Anal. Bioanal. Chem. 402, 2195–2208 (2012) CrossRefGoogle Scholar
  5. 5.
    C.M. Schmidt, M.S. Walton, K. Trentelman, Anal. Chem. 81, 8513–8518 (2009) CrossRefGoogle Scholar
  6. 6.
    S. Calusi et al., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 266, 2306–2310 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    E. Colombo et al., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 266, 1527–1532 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    L. Giuntini, Anal. Bioanal. Chem. 401(3), 785–793 (2011) CrossRefGoogle Scholar
  9. 9.
    A. Lo Giudice et al., Anal. Bioanal. Chem. 395, 2211–2217 (2009) CrossRefGoogle Scholar
  10. 10.
    A. Re et al., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 269, 2373–2377 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    P.K. Abraitis, R.A.D. Pattrick, D.J. Vaughan, Int. J. Miner. Process. 74, 41–59 (2004) CrossRefGoogle Scholar
  12. 12.
    D.L. Huston et al., Econ. Geol. 90, 1167–1196 (1995) CrossRefGoogle Scholar
  13. 13.
    N. Koglin et al., Miner. Depos. 45, 259–280 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    H. Chen et al., Miner. Depos. 46(8), 1001–1006 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    D. Bollini et al., Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 328, 173–176 (1993) ADSCrossRefGoogle Scholar
  16. 16.
    M. Massi et al., Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 190(1–4), 276–282 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    L. Giuntini, M. Massi, S. Calusi, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 576, 266–273 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    A. Lo Giudice et al., Anal. Bioanal. Chem. 404(1), 277–281 (2012) CrossRefGoogle Scholar
  19. 19.
    D.J. Vaughan (ed.), Sulfide Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry, vol. 61 (Mineralogical Society of America, Chantille, 2006), 714 pp. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Re
    • 1
  • D. Angelici
    • 1
    • 2
    • 3
  • A. Lo Giudice
    • 1
    • 2
  • E. Maupas
    • 2
  • L. Giuntini
    • 4
    • 5
  • S. Calusi
    • 4
    • 5
  • N. Gelli
    • 5
  • M. Massi
    • 4
    • 5
  • A. Borghi
    • 3
  • L. M. Gallo
    • 6
  • G. Pratesi
    • 7
  • P. A. Mandò
    • 4
    • 5
  1. 1.Sezione di TorinoIstituto Nazionale di Fisica Nucleare (INFN)TorinoItaly
  2. 2.Dipartimento di FisicaUniversità di TorinoTorinoItaly
  3. 3.Dipartimento di Scienze della TerraUniversità di TorinoTorinoItaly
  4. 4.Dipartimento di FisicaUniversità di FirenzeFirenzeItaly
  5. 5.Sezione di FirenzeIstituto Nazionale di Fisica Nucleare (INFN)FirenzeItaly
  6. 6.Museo Regionale di Scienze NaturaliTorinoItaly
  7. 7.Dipartimento di Scienze della Terra and Museo di Storia NaturaleUniversità di FirenzeFirenzeItaly

Personalised recommendations