Skip to main content
Log in

X-ray topography study of monocrystalline silicon wafers diffused with phosphorus by different methods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To reduce the cost of the emitter diffusion process, there has been increasing interest to substitute the standard process of batch POCl3 emitter diffusion used in the silicon solar-cell manufacturing industry with in-line diffusion processes such as the spray-on and screen-printing process. For this reason, it is essential to study and compare the processes of different diffusion methods from the point of view of the crystalline quality of the final wafers. X-ray transmission topography was employed to characterize the possible precipitates and other microdefects generated in Czochralski-grown silicon (Cz Si) during the emitter diffusion process carried out by screen-printing, spray-on and the standard process, in which the emitter was provided by a liquid (POCl3) source. The results indicate that the phosphorus diffusion process influences the crystalline quality of the wafers and the efficiency of the external gettering process that takes place during phosphorus diffusion depends on the diffusion method employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Bentzen, A. Holt, Mater. Sci. Eng. B 159–160, 228 (2009)

    Article  Google Scholar 

  2. J. Nijs, E. Demesmaeker, J. Szlufcik, J. Poortmans, L. Frisson, K. De Clercq, M. Ghannam, R. Mertens, R. Van Overstraeten, Sol. Energy Mater. Sol. Cells 41–42, 101 (1996)

    Article  Google Scholar 

  3. S. Noël, L. Ventura, A. Slaoui, J.C. Muller, B. Groh, R. Schindler, B. Fröschle, T. Theiler, J. Electron. Mater. 27, 1315 (1998)

    Article  ADS  Google Scholar 

  4. M.D. Negoita, T.Y. Tan, J. Appl. Phys. 94, 5064 (2003)

    Article  ADS  Google Scholar 

  5. A. Istratov, C. Flink, H. Hielsmair, E.R. Weber, Appl. Phys. Lett. 71, 2121 (1997)

    Article  ADS  Google Scholar 

  6. A. Bentzen, A. Holt, R. Kopecek, G. Stokkan, J.S. Christensen, B.G. Svensson, J. Appl. Phys. 99, 093509 (2006)

    Article  ADS  Google Scholar 

  7. S.M. Mye, M. Seibt, W. Schroter, J. Appl. Phys. 88, 3795 (2000)

    Article  ADS  Google Scholar 

  8. H.B. Xu, R.J. Hong, B. Ai, L. Zhuang, H. Shen, Appl. Energy 87, 33425 (2010)

    Google Scholar 

  9. C. Voyer, N.G. Tarr, R.E. Thomas, S. Varma, in Proc. of the 3rd World Conference on Photovoltaic Energy Conversion (2003), p. 1415

    Google Scholar 

  10. R. Chaoui, A. Messaoud, M.L. Zitouni, M.R. Charif, Renew. Energy 23, 417 (2001)

    Article  Google Scholar 

  11. S. Bourdais, G. Beaucarne, A. Slaoui, J. Poortmans, B. Semmache, C. Dubois, Sol. Energy Mater. Sol. Cells 65, 487 (2001)

    Article  Google Scholar 

  12. R. Falster, V.V. Voronkov, Mater. Res. Soc. Bull. 25(6), 28 (2000)

    Article  Google Scholar 

  13. V.I. Talanin, I.E. Talanin, Semicond. Phys. Quantum Electron. Optoelectron. 7(1), 16 (2004)

    Google Scholar 

  14. O. Caha, M. Meduña, Physica B 404, 4626 (2009)

    Article  ADS  Google Scholar 

  15. I.L. Shul’pina, R.N. Kyutt, V.V. Ratnikov, I.A. Prokhorov, I.Zh. Bezbakh, M.P. Shcheglov, Tech. Phys. 55(4), 537 (2010)

    Article  Google Scholar 

  16. A. Bentzen, A. Holt, J.S. Christensen, B.G. Svensson, J. Appl. Phys. 99, 64502 (2006)

    Article  Google Scholar 

  17. Y. Zeng, X. Ma, D. Tian, W. Wang, L. Gong, D. Yang, D. Que, J. Appl. Phys. 105, 93503 (2009)

    Article  Google Scholar 

  18. A. Authier, Dynamical Theory of X-Ray Diffracttion (Oxford University Press, Oxford, 2001), pp. 513–575

    Google Scholar 

  19. D.K. Bowen, B.K. Tanner, High Resolution X-Ray Diffractometry and Topography (Taylor, London, 1998), pp. 172–205

    Google Scholar 

  20. S. Iida, S. Kawado, T. Maehama, K. Kajiwaea, S. Kimura, J. Matsui, Y. Suzuki, Y. Chikaura, J. Phys. Appl. Phys. A 38, 23 (2005)

    Article  ADS  Google Scholar 

  21. Isofotón (Solar Cell Manufacture), Pol. Guadalhorce, Málaga, Spain

  22. F. Helmut, Defects in crystals. (ViFaPhys.de (Germany) 2006), http://www.tf.uni-kiel.de/matwis/amat/def_en/index.html

  23. D. Hull, D.J. Bacon, Introduction to Dislocations, 5th edn. (Elsevier, Oxford, 2011), pp. 85–107

    Book  Google Scholar 

  24. B.K. Tanner, X-Ray Diffraction Topography (Pergamon, Oxford, 1976), pp. 100–104

    Book  Google Scholar 

  25. G. Kissinger, J. Vanhellemont, C. Claeys, H. Richter, J. Cryst. Growth 158, 191 (1996)

    Article  ADS  Google Scholar 

  26. G.F. Cerofolini, L. Meda, Physical Chemistry of, in, and on Silicon (Springer, Berlin, 1989)

    Book  Google Scholar 

  27. I. Perichauld, Sol. Energy Mater. Sol. Cells 72, 315 (2002)

    Article  Google Scholar 

  28. L.J. Caballero, C. Cañizo, R. Esteban, A.E. Moussaoui, A. Luque, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Japan (2003), p. 1013

    Google Scholar 

  29. S.K. Gandhi, VLSI Fabrication Principles. Silicon and Gallium Arsenide (Willey-Interscience, New York, 1983)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the collaboration with ISOFOTON. This work has been supported by the EN2006-02217/ALT with Spain PN I+D funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vallejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallejo, B., González-Mañas, M. & Caballero, M.A. X-ray topography study of monocrystalline silicon wafers diffused with phosphorus by different methods. Appl. Phys. A 113, 531–536 (2013). https://doi.org/10.1007/s00339-013-7564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7564-z

Keywords

Navigation