Skip to main content

Characterization of magnetostatic surface spin waves in magnetic thin films: evaluation for microelectronic applications

Abstract

The authors have investigated the possibility of utilizing spin waves for interchip and intrachip communications, and as logic elements using both simulations and experimental techniques. Through simulations it has been shown that the decay lengths of magnetostatic spin waves are affected most by the damping parameter, and least by the exchange stiffness constant. The damping and dispersion properties of spin waves limit the attenuation length to several tens of microns. Thus, we have ruled out the possibility of interchip communication via spin waves. Experimental techniques for the extraction of the dispersion relationship have also been demonstrated, along with experimental demonstrations of spin wave interference for amplitude modulation. The effectiveness of spin wave modulation through interference, along with the capability of determining the spin wave dispersion relationships electrically during the manufacturing and testing phase of chip production, may pave the way for using spin waves in analog computing wherein the circuitry required for performing similar functionality becomes prohibitive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. M. Murphy, S. Montangero, V. Giovannetti, T. Calarco, Phys. Rev. A 82, 022318 (2010)

    Article  ADS  Google Scholar 

  2. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Nature 464, 262 (2010)

    Article  ADS  Google Scholar 

  3. A.V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 105, 060502 (2010)

    Article  ADS  Google Scholar 

  4. S. Bandyopadhyay, M. Cahay, Nanotechnology 20, 412001 (2009)

    Article  Google Scholar 

  5. P. Buczek, A. Ernst, L.M. Sandratskii, Phys. Rev. Lett. 105, 097205 (2010)

    Article  ADS  Google Scholar 

  6. S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Nature 437, 389 (2005)

    Article  ADS  Google Scholar 

  7. K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, E. Saitoh, J. Appl. Phys. 109, 103913 (2011)

    Article  ADS  Google Scholar 

  8. M. Gradhand, D.V. Fedorov, P. Zahn, I. Mertig, Phys. Rev. B 81, 245109 (2010)

    Article  ADS  Google Scholar 

  9. O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Phys. Rev. B 82, 214403 (2010)

    Article  ADS  Google Scholar 

  10. H. Chudo, K. Ando, K. Saito, S. Okayasu, R. Haruki, Y. Sakuraba, H. Yasuoka, K. Takanashi, E. Saitoh, J. Appl. Phys. 109, 073915 (2011)

    Article  ADS  Google Scholar 

  11. O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010)

    Article  ADS  Google Scholar 

  12. S.S. Mukherjee, P. Deorani, J.H. Kwon, H. Yang, Phys. Rev. B 85, 094416 (2012)

    Article  ADS  Google Scholar 

  13. L.Q. Liu, T. Moriyama, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011)

    Article  ADS  Google Scholar 

  14. J. Xiao, G.E.W. Bauer, K. Uchida, E. Saitoh, S. Maekawa, Phys. Rev. B 81, 214418 (2010)

    Article  ADS  Google Scholar 

  15. H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010)

    Article  ADS  Google Scholar 

  16. T.J. Silva, C.S. Lee, T.M. Crawford, C.T. Rogers, J. Appl. Phys. 85, 7849 (1999)

    Article  ADS  Google Scholar 

  17. S.K. Choi, K.S. Lee, S.K. Kim, Appl. Phys. Lett. 89, 062501 (2006)

    Article  ADS  Google Scholar 

  18. K. Perzlmaier, G. Woltersdorf, C.H. Back, Phys. Rev. B 77, 054425 (2008)

    Article  ADS  Google Scholar 

  19. J.H. Kwon, S.S. Mukherjee, M. Jamali, M. Hayashi, H. Yang, Appl. Phys. Lett. 99, 132505 (2011)

    Article  ADS  Google Scholar 

  20. S.S. Mukherjee, J.H. Kwon, M. Jamali, M. Hayashi, H. Yang, Phys. Rev. B 85, 224408 (2012)

    Article  ADS  Google Scholar 

  21. T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, Appl. Phys. Lett. 94, 042503 (2009)

    Article  ADS  Google Scholar 

  22. D.R. Birt, B. O’Gorman, M. Tsoi, X.Q. Li, V.E. Demidov, S.O. Demokritov, Appl. Phys. Lett. 95, 122510 (2009)

    Article  ADS  Google Scholar 

  23. A. Dussaux, B. Georges, J. Grollier, V. Cros, A.V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K.A. Zvezdin, K. Ando, A. Fert, Nat. Commun. 1, 8 (2010)

    Article  Google Scholar 

  24. S. Garzon, L.F. Ye, R.A. Webb, T.M. Crawford, M. Covington, S. Kaka, Phys. Rev. B 78, 180401(R) (2008)

    Article  ADS  Google Scholar 

  25. M.J. Donahue, D.G. Porter, OOMMF code. http://math.nist.gov/oommf/

  26. H.N. Bertram, Theory of Magnetic Recording (Cambridge Univ. Press, Cambridge, 1994)

    Book  Google Scholar 

  27. J.D. Adam, Electron. Lett. 6, 718 (1970)

    Article  Google Scholar 

  28. J.B. Merry, J.C. Sethares, IEEE Trans. Magn. 9, 527 (1973)

    Article  ADS  Google Scholar 

  29. J.C. Sethares, M.R. Stiglitz, IEEE Trans. Magn. 10, 787 (1974)

    Article  ADS  Google Scholar 

  30. D.C. Webb, C. Vittoria, P. Lubitz, H. Lessoff, IEEE Trans. Magn. 11, 1259 (1975)

    Article  ADS  Google Scholar 

  31. D.J. Halchin, D.D. Stancil, D.M. Gualtieri, P.F. Tumelty, J. Appl. Phys. 57, 3724 (1985)

    Article  ADS  Google Scholar 

  32. D.D. Stancil, J. Appl. Phys. 59, 218 (1986)

    Article  ADS  Google Scholar 

  33. S. Chakrabarti, C.K. Maiti, D. Bhattacharya, J. Appl. Phys. 76, 1260 (1994)

    Article  ADS  Google Scholar 

  34. T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R.L. Stamps, M.P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008)

    Article  ADS  Google Scholar 

  35. M. Bailleul, D. Olligs, C. Fermon, Appl. Phys. Lett. 83, 972 (2003)

    Article  ADS  Google Scholar 

  36. A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss, K. Vogt, S.J. Hermsdoerfer, B. Laegel, P.A. Beck, B. Hillebrands, Appl. Phys. Lett. 95, 262508 (2009)

    Article  ADS  Google Scholar 

  37. M.L. Schneider, A.B. Kos, T.J. Silva, Appl. Phys. Lett. 85, 254 (2004)

    Article  ADS  Google Scholar 

  38. M. Covington, T.M. Crawford, G.J. Parker, Phys. Rev. Lett. 89, 237202 (2002)

    Article  ADS  Google Scholar 

  39. K. Vogt, H. Schultheiss, S.J. Hermsdoerfer, P. Pirro, A.A. Serga, B. Hillebrands, Appl. Phys. Lett. 95, 182508 (2009)

    Article  ADS  Google Scholar 

  40. S. Neusser, G. Duerr, H.G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C.H. Back, D. Grundler, Phys. Rev. Lett. 105, 067208 (2010)

    Article  ADS  Google Scholar 

  41. K. Sekiguchi, K. Yamada, S.M. Seo, K.J. Lee, D. Chiba, K. Kobayashi, T. Ono, Appl. Phys. Lett. 97, 022508 (2010)

    Article  ADS  Google Scholar 

  42. A.B. Kos, T.J. Silva, P. Kabos, Rev. Sci. Instrum. 73, 3563 (2002)

    Article  ADS  Google Scholar 

  43. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1995)

    Google Scholar 

  44. A. Khitun, D.E. Nikonov, M. Bao, K. Galatsis, K.L. Wang, Nanotechnology 18, 465202 (2007)

    Article  ADS  Google Scholar 

  45. O.V. Kolokoltsev, C.L. Ordonez-Romero, N. Qureshi, J. Appl. Phys. 110, 024504 (2011)

    Article  ADS  Google Scholar 

  46. S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai, T. Miyazaki, J. Appl. Phys. 105, 07D306 (2009)

    Article  Google Scholar 

  47. S.T.B. Goennenwein, T. Graf, T. Wassner, M.S. Brandt, M. Stutzmann, J.B. Philipp, R. Gross, M. Krieger, K. Zurn, P. Ziemann, A. Koeder, S. Frank, W. Schoch, A. Waag, Appl. Phys. Lett. 82, 730 (2003)

    Article  ADS  Google Scholar 

  48. X. Liu, Y. Sasaki, J.K. Furdyna, Phys. Rev. B 67, 205204 (2003)

    Article  ADS  Google Scholar 

  49. M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G.M. Schott, C. Ruester, C. Gould, G. Karczewski, G. Schmidt, L.W. Molenkamp, Phys. Rev. B 70, 245325 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Singapore National Research Foundation under CRP Award No. NRF-CRP 4-2008-06 and a Grant-in-Aid for Scientific Research (No. 22760015) from MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunsoo Yang.

Additional information

S.S.M. and J.H.K. contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kwon, J.H., Mukherjee, S.S., Deorani, P. et al. Characterization of magnetostatic surface spin waves in magnetic thin films: evaluation for microelectronic applications. Appl. Phys. A 111, 369–378 (2013). https://doi.org/10.1007/s00339-012-7542-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7542-x

Keywords

  • Wave Packet
  • Spin Wave
  • Bias Field
  • Attenuation Length
  • Dispersion Relationship