Abstract
The authors have investigated the possibility of utilizing spin waves for interchip and intrachip communications, and as logic elements using both simulations and experimental techniques. Through simulations it has been shown that the decay lengths of magnetostatic spin waves are affected most by the damping parameter, and least by the exchange stiffness constant. The damping and dispersion properties of spin waves limit the attenuation length to several tens of microns. Thus, we have ruled out the possibility of interchip communication via spin waves. Experimental techniques for the extraction of the dispersion relationship have also been demonstrated, along with experimental demonstrations of spin wave interference for amplitude modulation. The effectiveness of spin wave modulation through interference, along with the capability of determining the spin wave dispersion relationships electrically during the manufacturing and testing phase of chip production, may pave the way for using spin waves in analog computing wherein the circuitry required for performing similar functionality becomes prohibitive.
This is a preview of subscription content, access via your institution.









References
M. Murphy, S. Montangero, V. Giovannetti, T. Calarco, Phys. Rev. A 82, 022318 (2010)
Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh, Nature 464, 262 (2010)
A.V. Gorshkov, J. Otterbach, E. Demler, M. Fleischhauer, M.D. Lukin, Phys. Rev. Lett. 105, 060502 (2010)
S. Bandyopadhyay, M. Cahay, Nanotechnology 20, 412001 (2009)
P. Buczek, A. Ernst, L.M. Sandratskii, Phys. Rev. Lett. 105, 097205 (2010)
S. Kaka, M.R. Pufall, W.H. Rippard, T.J. Silva, S.E. Russek, J.A. Katine, Nature 437, 389 (2005)
K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, E. Saitoh, J. Appl. Phys. 109, 103913 (2011)
M. Gradhand, D.V. Fedorov, P. Zahn, I. Mertig, Phys. Rev. B 81, 245109 (2010)
O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Phys. Rev. B 82, 214403 (2010)
H. Chudo, K. Ando, K. Saito, S. Okayasu, R. Haruki, Y. Sakuraba, H. Yasuoka, K. Takanashi, E. Saitoh, J. Appl. Phys. 109, 073915 (2011)
O. Mosendz, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann, Phys. Rev. Lett. 104, 046601 (2010)
S.S. Mukherjee, P. Deorani, J.H. Kwon, H. Yang, Phys. Rev. B 85, 094416 (2012)
L.Q. Liu, T. Moriyama, D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011)
J. Xiao, G.E.W. Bauer, K. Uchida, E. Saitoh, S. Maekawa, Phys. Rev. B 81, 214418 (2010)
H. Adachi, K. Uchida, E. Saitoh, J. Ohe, S. Takahashi, S. Maekawa, Appl. Phys. Lett. 97, 252506 (2010)
T.J. Silva, C.S. Lee, T.M. Crawford, C.T. Rogers, J. Appl. Phys. 85, 7849 (1999)
S.K. Choi, K.S. Lee, S.K. Kim, Appl. Phys. Lett. 89, 062501 (2006)
K. Perzlmaier, G. Woltersdorf, C.H. Back, Phys. Rev. B 77, 054425 (2008)
J.H. Kwon, S.S. Mukherjee, M. Jamali, M. Hayashi, H. Yang, Appl. Phys. Lett. 99, 132505 (2011)
S.S. Mukherjee, J.H. Kwon, M. Jamali, M. Hayashi, H. Yang, Phys. Rev. B 85, 224408 (2012)
T. Neumann, A.A. Serga, B. Hillebrands, M.P. Kostylev, Appl. Phys. Lett. 94, 042503 (2009)
D.R. Birt, B. O’Gorman, M. Tsoi, X.Q. Li, V.E. Demidov, S.O. Demokritov, Appl. Phys. Lett. 95, 122510 (2009)
A. Dussaux, B. Georges, J. Grollier, V. Cros, A.V. Khvalkovskiy, A. Fukushima, M. Konoto, H. Kubota, K. Yakushiji, S. Yuasa, K.A. Zvezdin, K. Ando, A. Fert, Nat. Commun. 1, 8 (2010)
S. Garzon, L.F. Ye, R.A. Webb, T.M. Crawford, M. Covington, S. Kaka, Phys. Rev. B 78, 180401(R) (2008)
M.J. Donahue, D.G. Porter, OOMMF code. http://math.nist.gov/oommf/
H.N. Bertram, Theory of Magnetic Recording (Cambridge Univ. Press, Cambridge, 1994)
J.D. Adam, Electron. Lett. 6, 718 (1970)
J.B. Merry, J.C. Sethares, IEEE Trans. Magn. 9, 527 (1973)
J.C. Sethares, M.R. Stiglitz, IEEE Trans. Magn. 10, 787 (1974)
D.C. Webb, C. Vittoria, P. Lubitz, H. Lessoff, IEEE Trans. Magn. 11, 1259 (1975)
D.J. Halchin, D.D. Stancil, D.M. Gualtieri, P.F. Tumelty, J. Appl. Phys. 57, 3724 (1985)
D.D. Stancil, J. Appl. Phys. 59, 218 (1986)
S. Chakrabarti, C.K. Maiti, D. Bhattacharya, J. Appl. Phys. 76, 1260 (1994)
T. Schneider, A.A. Serga, B. Leven, B. Hillebrands, R.L. Stamps, M.P. Kostylev, Appl. Phys. Lett. 92, 022505 (2008)
M. Bailleul, D. Olligs, C. Fermon, Appl. Phys. Lett. 83, 972 (2003)
A.V. Chumak, P. Pirro, A.A. Serga, M.P. Kostylev, R.L. Stamps, H. Schultheiss, K. Vogt, S.J. Hermsdoerfer, B. Laegel, P.A. Beck, B. Hillebrands, Appl. Phys. Lett. 95, 262508 (2009)
M.L. Schneider, A.B. Kos, T.J. Silva, Appl. Phys. Lett. 85, 254 (2004)
M. Covington, T.M. Crawford, G.J. Parker, Phys. Rev. Lett. 89, 237202 (2002)
K. Vogt, H. Schultheiss, S.J. Hermsdoerfer, P. Pirro, A.A. Serga, B. Hillebrands, Appl. Phys. Lett. 95, 182508 (2009)
S. Neusser, G. Duerr, H.G. Bauer, S. Tacchi, M. Madami, G. Woltersdorf, G. Gubbiotti, C.H. Back, D. Grundler, Phys. Rev. Lett. 105, 067208 (2010)
K. Sekiguchi, K. Yamada, S.M. Seo, K.J. Lee, D. Chiba, K. Kobayashi, T. Ono, Appl. Phys. Lett. 97, 022508 (2010)
A.B. Kos, T.J. Silva, P. Kabos, Rev. Sci. Instrum. 73, 3563 (2002)
C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1995)
A. Khitun, D.E. Nikonov, M. Bao, K. Galatsis, K.L. Wang, Nanotechnology 18, 465202 (2007)
O.V. Kolokoltsev, C.L. Ordonez-Romero, N. Qureshi, J. Appl. Phys. 110, 024504 (2011)
S. Mizukami, D. Watanabe, M. Oogane, Y. Ando, Y. Miura, M. Shirai, T. Miyazaki, J. Appl. Phys. 105, 07D306 (2009)
S.T.B. Goennenwein, T. Graf, T. Wassner, M.S. Brandt, M. Stutzmann, J.B. Philipp, R. Gross, M. Krieger, K. Zurn, P. Ziemann, A. Koeder, S. Frank, W. Schoch, A. Waag, Appl. Phys. Lett. 82, 730 (2003)
X. Liu, Y. Sasaki, J.K. Furdyna, Phys. Rev. B 67, 205204 (2003)
M. Sawicki, F. Matsukura, A. Idziaszek, T. Dietl, G.M. Schott, C. Ruester, C. Gould, G. Karczewski, G. Schmidt, L.W. Molenkamp, Phys. Rev. B 70, 245325 (2004)
Acknowledgements
This work is supported by the Singapore National Research Foundation under CRP Award No. NRF-CRP 4-2008-06 and a Grant-in-Aid for Scientific Research (No. 22760015) from MEXT, Japan.
Author information
Authors and Affiliations
Corresponding author
Additional information
S.S.M. and J.H.K. contributed equally to this work.
Rights and permissions
About this article
Cite this article
Kwon, J.H., Mukherjee, S.S., Deorani, P. et al. Characterization of magnetostatic surface spin waves in magnetic thin films: evaluation for microelectronic applications. Appl. Phys. A 111, 369–378 (2013). https://doi.org/10.1007/s00339-012-7542-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-012-7542-x
Keywords
- Wave Packet
- Spin Wave
- Bias Field
- Attenuation Length
- Dispersion Relationship