Skip to main content
Log in

Effects of liquid structure transition on solidification by the Newton thermal analysis method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper is to explore the effects of the liquid structure transition (LST) on the solidification kinetics of Sn-30 wt% Sb alloy by the Newton thermal analysis (NTA) method and the solidified microstructure analysis. Influence of the cooling rate on solidification behavior and microstructure was also concerned. With a self-designed sand mold, the cooling curves of five points were collected automatically in the process of solidification by a HYDRA. In the case of the liquid structure transition and a faster cooling rate, the modification melt treatment will lead to a higher undercooling of nucleation and an increased solidification latent heat in central part of solidifying castings, then the eventual grain size was evidently refined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Sette, M.H. Krisch, Science 280, 1550 (1998)

    Article  Google Scholar 

  2. C. Notthoff, H. Franz, M. Hanfland, D.M. Herlach, D. Holland-Moritz, G. Jacobs, R. Lippok, W. Petry, D. Platzek J. Non-Cryst. Solids 250–252, 632–636 (1999)

    Article  Google Scholar 

  3. Ts. Lo, S. Dobler, M. Plapp, Acta Mater. 51, 599 (2003)

    Article  Google Scholar 

  4. J. Wang, S. He, B. Sun, Q. Guo, M. Nishio, J. Mater. Process. Technol. 141, 29–34 (2003)

    Article  Google Scholar 

  5. P.J. Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 332, 371–374 (2002)

    Article  Google Scholar 

  6. X.F. Bian, W.M. Wang, Mater. Lett. 44, 54–58 (2000)

    Article  Google Scholar 

  7. F.Q. Zu, R.R. Shen, Y. Xi, X.F. Li, J. Phys. Condens. Matter 18, 2813–2823 (2006)

    Article  ADS  Google Scholar 

  8. T.B. Massalski, Binary Alloy Phase Diagram (American Society for Metals, Metals Park, 1986)

    Google Scholar 

  9. H. Cruz, C. Gonzalez, A. Juarez, M. Herrera, J. Juarez, J. Mater. Process. Technol. 178, 128–134 (2006)

    Article  Google Scholar 

  10. W. Jank, J. Hafner, J. Non-Cryst. Solids 114, 16 (1989)

    Article  ADS  Google Scholar 

  11. K.G. Upadhya, D.M. Stefanescu, K. Lieu, B.P. Ycager, AFS Trans. 97, 61–66 (1989)

    Google Scholar 

  12. H. Richter, G. Breitling, Z. Metall. 61, 628 (1970)

    Google Scholar 

  13. A.C. Mitus, A.Z. Patashinkii, B.I. Shumilo, Phys. Lett. A 113, 41 (1985)

    Article  ADS  Google Scholar 

  14. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980)

    Google Scholar 

  15. D.L. Ye, Thermochemical properties of inorganic substances, 1–2 (1981)

Download references

Acknowledgements

The authors are very grateful to the National Natural Science Foundation of China (Grant No. 50571033) and the Natural Science Foundation of Anhui Province (Grant Nos. 070416234 and 070414178) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Yi Xie or Xian Fen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, M.Y., Li, X.F., Xu, G.B. et al. Effects of liquid structure transition on solidification by the Newton thermal analysis method. Appl. Phys. A 113, 431–437 (2013). https://doi.org/10.1007/s00339-012-7539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7539-5

Keywords

Navigation