Advertisement

Applied Physics A

, Volume 111, Issue 1, pp 297–302 | Cite as

Optimization of thickness and uniformity of photonic structures fabricated by interference lithography

  • Thi Thanh Ngan Nguyen
  • Quang Liem Nguyen
  • Joseph Zyss
  • Isabelle Ledoux-Rak
  • Ngoc Diep LaiEmail author
Article

Abstract

We study the influence of the absorption of materials used for holographic fabrication of photonic structures on their uniformity along the film thickness. We demonstrate theoretically and experimentally a strong dependence of structure thickness and uniformity on the exposure dose of the interference pattern. A novel technique is proposed to overcome the absorption effect and to fabricate thick two- and three-dimensional structures, which are uniform throughout the film thickness. It consists of exposing once again the sample by an additional and independent counterpropagating uniform beam, which allows to compensate the diminution of the light intensity of interference pattern. These results are very useful for the fabrication of high quality polymer-based photonic crystals.

Keywords

Photonic Crystal Interference Pattern Photonic Structure Uniform Beam Structure Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to J. Lautru for his invaluable help and access to the clean room and to the use of scanning electronic microscope. This work was partially supported by Institute d’Alembert of the Ecole Normale Supérieure de Cachan and by the “Triangle de la Physique”, in the framework of the project “PUTTON”. Nguyen Thi Thanh Ngan acknowledges the fellowship from the Vietnam International Education Development “322 program” and the support from USTH university.

References

  1. 1.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059–2062 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    S. John, Phys. Rev. Lett. 58, 2486–2489 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    Editorial, Nat. Mater. 11, 995 (2012) CrossRefGoogle Scholar
  4. 4.
    S. Noda, K. Tomoda, N. Yamamoto, A. Chutinan, Science 289, 604–606 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    K. Aoki, H.T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, Y. Aoyagi, Nat. Mater. 2, 117–121 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Edrington, Adv. Mater. 13, 421–425 (2001) CrossRefGoogle Scholar
  7. 7.
    A.K.G. Tavakkoli, K.W. Gotrik, A.F. Hannon, A. Alexander-Katz, C.A. Ross, K.K. Berggren, Science 336, 1294–1298 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    G.M. Gratson, M.J. Xu, J.A. Lewis, Nature 428, 386 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    Z. Nie, E. Kumacheva, Nat. Mater. 7, 277–290 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Rockel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51–55 (1999) ADSCrossRefGoogle Scholar
  11. 11.
    S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412, 697–698 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    S. Wong, V. Kitaev, G.A. Ozin, J. Am. Chem. Soc. 125, 15589–15598 (2003) CrossRefGoogle Scholar
  13. 13.
    C.Y. Wu, N.D. Lai, C.C. Hsu, J. Korean Phys. Soc. 52, 1585–1588 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    V. Berger, O. Gauthier-Lafaye, E. Costard, J. Appl. Phys. 82, 60–64 (1997) ADSCrossRefGoogle Scholar
  15. 15.
    M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, A.J. Turberfield, Nature 404, 53–56 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    N.D. Lai, W.P. Liang, J.H. Lin, C.C. Hsu, C.H. Lin, Opt. Express 13, 9606–9611 (2005) ADSGoogle Scholar
  17. 17.
    N.D. Lai, W.P. Liang, J.H. Lin, C.C. Hsu, Opt. Express 13, 5331–5337 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    N.D. Lai, J.H. Lin, W.P. Liang, C.C. Hsu, C.H. Lin, Appl. Opt. 45, 5777–5782 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. Kelly, J. Sheridan, Opt. Express 13, 1939–1947 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    R.C. Rumpf, E.G. Johnson, J. Opt. Soc. Am. A 21, 1703–1713 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    N.D. Lai, T.S. Zheng, D.B. Do, J.H. Lin, C.C. Hsu, Appl. Phys. A 100, 171–175 (2010) ADSCrossRefGoogle Scholar
  22. 22.
    H. Wang, J. Wang, H. Liu, D. Yu, X. Sun, J. Zhang, Opt. Lett. 37, 2241–2243 (2012) ADSCrossRefGoogle Scholar
  23. 23.
    T. Kondo, S. Juodkazis, V. Mizeikis, H. Misawa, Opt. Express 14, 7943–7953 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    S. Jeon, V. Malyarchuk, J.A. Rogers, G.P. Wiederrecht, Opt. Express 14, 2300–2308 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    S.W. Lee, S.S. Lee, Opt. Lett. 33, 40–42 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Thi Thanh Ngan Nguyen
    • 1
    • 2
  • Quang Liem Nguyen
    • 2
  • Joseph Zyss
    • 1
  • Isabelle Ledoux-Rak
    • 1
  • Ngoc Diep Lai
    • 1
    Email author
  1. 1.Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de CachanUMR CNRS 8537CachanFrance
  2. 2.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations