Skip to main content
Log in

Low temperature thermoelectric properties of Cu intercalated TiSe2: a charge density wave material

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this communication, we investigate the thermoelectric properties of a charge density wave material TiSe2 upon Cu intercalation. Polycrystalline Cu x TiSe2 (x=0–0.11) alloys were synthesized using solid state sintering process and their morphological and structural properties were investigated. The material grows in layered morphology and the c-lattice parameter increases linearly with x. The temperature dependent resistivity measured in the 300–5 K range, shows that increasing x leads to a systematic transition from charge density wave state to the metallic state. For x=0.11, the room temperature thermoelectric figure-of-merit is found to be 0.104, which is higher by seven orders in magnitude (i.e. 1.93×10−8) measured for pristine TiSe2 and comparable to the other reported thermoelectric materials. These results show that Cu x TiSe2 are a potential material for the low temperature thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969)

    Article  ADS  Google Scholar 

  2. K. Rossnagel, J. Phys. Condens. Matter 23, 213001 (2011)

    Article  ADS  Google Scholar 

  3. L. Rapoport, N. Fleischer, R. Tenne, J. Mater. Chem. 15, 1782 (2005)

    Article  Google Scholar 

  4. L. Li, H. Wang, X. Fang, T. Zhai, Y. Bando, D. Golberg, Energy Environ. Sci. 4, 2586 (2011)

    Article  Google Scholar 

  5. M.S. Whittingham, Prog. Solid State Chem. 12, 41 (1978)

    Article  Google Scholar 

  6. J. Rasch, T. Stemmler, R. Manzke, J. Alloys Compd. 442, 262 (2007)

    Article  Google Scholar 

  7. E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong, R.J. Cava, Nat. Phys. 2, 544 (2006)

    Article  Google Scholar 

  8. E.S. Toberer, A.F. May, G.J. Snyder, Chem. Mater. 22, 624 (2010)

    Article  Google Scholar 

  9. C. Riekel, J. Solid State Chem. 17, 389 (1976)

    Article  ADS  Google Scholar 

  10. Y. Wang, Y. Sui, P. Ren, L. Wang, X. Wang, W. Su et al., Chem. Mater. 22, 1155 (2010)

    Article  Google Scholar 

  11. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  12. Y.S. Hor, R.J. Cava, Mater. Res. Bull. 44, 1375 (2009)

    Article  Google Scholar 

  13. E.J. Skoug, J.D. Cain, D.T. Morelli, Appl. Phys. Lett. 98, 261911 (2011)

    Article  ADS  Google Scholar 

  14. A. Harnwunggmoung, K. Kurosaki, H. Muta, S. Yamanaka, Appl. Phys. Lett. 96, 202107 (2010)

    Article  ADS  Google Scholar 

  15. E. Guilmeau, Y. Breard, A. Maignan, Appl. Phys. Lett. 99, 052107 (2011)

    Article  ADS  Google Scholar 

  16. T. Caillat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996)

    Article  ADS  Google Scholar 

  17. B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)

    Article  ADS  Google Scholar 

  18. G.S. Nolas, M. Kaeser, R.T. Littleton, T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000)

    Article  ADS  Google Scholar 

  19. D.M. Rowe, CRC Handbook on Thermoelectric (CRC Press, Boca Raton, 1996)

    Google Scholar 

  20. P. Limette, V. Hardy, P. Auban-Scenzier, D. Jerome, D. Flahaut, S. Hebert, R. Fresard, Ch. Simon, J. Noudem, A. Maignan, Phys. Rev. B 71, 233108 (2005)

    Article  ADS  Google Scholar 

  21. M. Schwall, B. Balke, Appl. Phys. Lett. 98, 042106 (2011)

    Article  ADS  Google Scholar 

  22. C. Candolfi, B. Lenoir, A. Dauscher, B. Malaman, E. Guilmeau, J. Hejtamanek, Appl. Phys. Lett. 96, 262103 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Sudhindra Rayaprol for his help regarding the Rietveld refinement of the XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, R., Basu, R., Bhattacharya, S. et al. Low temperature thermoelectric properties of Cu intercalated TiSe2: a charge density wave material. Appl. Phys. A 111, 465–470 (2013). https://doi.org/10.1007/s00339-012-7536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7536-8

Keywords

Navigation