Abstract
The use of laser beams as excitation sources for the characterization of semiconductor nanowires (NWs) is largely extended. Raman spectroscopy and photoluminescence (PL) are currently applied to the study of NWs. However, NWs are systems with poor thermal conductivity and poor heat dissipation, which result in unintentional heating under the excitation with a focused laser beam with microscopic size, as those usually used in microRaman and microPL experiments. On the other hand, the NWs have subwavelength diameter, which changes the optical absorption with respect to the absorption in bulk materials. Furthermore, the NW diameter is smaller than the laser beam spot, which means that the optical power absorbed by the NW depends on its position inside the laser beam spot. A detailed analysis of the interaction between a microscopic focused laser beam and semiconductor NWs is necessary for the understanding of the experiments involving laser beam excitation of NWs. We present in this work a numerical analysis of the thermal transport in Si NWs, where the heat source is the laser energy locally absorbed by the NW. This analysis takes account of the optical absorption, the thermal conductivity, the dimensions, diameter and length of the NWs, and the immersion medium. Both free standing and heat-sunk NWs are considered. Also, the temperature distribution in ensembles of NWs is discussed. This analysis intends to constitute a tool for the understanding of the thermal phenomena induced by laser beams in semiconductor NWs.
This is a preview of subscription content, access via your institution.











References
Y. Cui, C.M. Lieber, Science 291, 851 (2001)
A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)
B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)
Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Nature 447, 1098–1101 (2007)
N. Singh, K.D. Buddharaju, S.K. Manhas, A. Agarwal, S.C. Rustagi, G.Q. Lo, N. Balasubramanian, D.L. Kwong, IEEE Trans. Electron Devices 55, 3107 (2008)
H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)
I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)
D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)
Y. Park, J. Kim, H. Kim, I. Kim, K. Lee, D. Seo, H. Choi, W. Kim, Appl. Phys. A 104, 7 (2011)
C. Guthy, C. Nam, J.E. Fischer, J. Appl. Phys. 103, 064319 (2008)
C. You, Nano Lett. 12, 2918 (2012)
T. Westover, R. Jones, J.Y. Huang, G. Wang, E. Lai, A.A. Talin, Nano Lett. 9, 257 (2009)
D.D.D. Ma, S.T. Lee, J. Shinar, Appl. Phys. Lett. 87, 033107 (2005)
F. Martelli, M. Piccin, G. Bais, F. Jabeen, S. Ambrosini, S. Rubini, A. Franciosi, Nanotechnology 18, 125603 (2007)
O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc, P. Gentile, P. Ferret, T. Baron, N. Magnea, Physica E 41, 963 (2009)
X.Q. Xie, W.F. Liu, J.I. Oh, W.Z. Shen, Appl. Phys. Lett. 99, 033107 (2011)
L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)
G. Brönstrup, N. Jahr, C. Leiterer, A. Csaki, W. Fritzsche, S. Chistiansen, ACS Nano 4, 7113 (2010)
H. Scheel, S. Reich, A.C. Ferrari, M. Cantoro, A. Colli, C. Thomsen, Appl. Phys. Lett. 88, 233114 (2006)
S. Bhattacharya, S. Samui, Appl. Phys. Lett. 84, 1564 (2004)
S.R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund, Nano Lett. 3, 627 (2003)
K.W. Adu, H.R. Gutiérrez, U.J. Kim, P.C. Eklund, Phys. Rev. B 73, 155333 (2006)
G.W. Zhou, Z. Zhang, D.P. Yu, Appl. Phys. Lett. 73, 677 (1998)
A. Torres, A. Martín-Martín, O. Martínez, A.C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, T. Rodríguez, Appl. Phys. Lett. 96, 011904 (2010)
L. Zhang, W. Ding, Y. Yan, J. Qu, B. Li, L.-Y. Li, K.T. Yue, D.P. Yu, Appl. Phys. Lett. 81, 4446 (2002)
I. Zardo, G. Abstreiter, A. Fontcuberta, in Nanowires, ed. by P. Prete (INTECH, Rijeka, 2010), p. 227. ISBN978-953-7619-79-4, Chap. 12
Y. Ahn, J. Dunning, J. Park, Nano Lett. 5, 1367 (2005)
H.Y. Chen, R.S. Chen, N.K. Rajan, F.C. Chang, L.C. Chen, K.H. Chen, Y.J. Yang, M.A. Reed, Phys. Rev. B 84, 205443 (2011)
R. Jalilian, G.U. Sumanasekera, H. Chandrasekharan, M.K. Sunkara, Phys. Rev. B 74, 155421 (2006)
G.S. Doerk, C. Carraro, R. Maboudian, Phys. Rev. B 80, 073306 (2009)
E. Alarcón-Lladó, J. Ibañez, R. Cuscó, L. Artús, J.D. Prades, S. Estradé, J.R. Morante, J. Raman, Spectroscopy 42, 153 (2011)
K. Roodenko, I.A. Goldthorpe, P.C. MacIntyre, Y.J. Chabal, Phys. Rev. B 82, 115210 (2010)
I.K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, Appl. Phys. Lett. 92, 063119 (2008)
M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmuller, A. Fontcuberta, G. Abstreiter, Appl. Phys. Lett. 97, 263107 (2010)
G.S. Doerk, C. Carraro, R. Maboudian, ACS Nano 4, 4908 (2010)
Y. Zhang, J. Kristofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan, P. Yang, IEEE Trans. Nanotechnol. 5, 67 (2006)
X.F. Liu, R. Wang, Y.P. Jiang, Q. Zhang, X.Y. Shan, X.H. Qiu, J. Appl. Phys. 108, 054310 (2010)
L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Nano Lett. 10, 439 (2010)
L. Cao, J. Park, P. Fan, B. Clemens, M.L. Brongersma, Nano Lett. 10, 1229 (2010)
J.R. Backhurst, J.H. Harker, J.F. Richardson, J.M. Coulson, Chemical Engineering, 6th edn., vol. 1 (Butterworth–Heinemann, Oxford, 1999). Chap. 9
B.K. Sun, X. Zhang, C.P. Grigoropoulos, Int. J. Heat Mass Transf. 40, 1591–1600 (1997)
M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969), Chap. 3 and Chap. 8
H. Kim, L. Kim, H. Choi, W. Kim, Appl. Phys. Lett. 96, 233106 (2010)
R. Chen, A.I. Hochbaum, P. Murphy, J.E. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)
M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J. Kim, J. Xiang, R. Chen, Nano Lett. 11, 5507 (2011)
J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, P. Yang, Nano Lett. 12, 2475 (2012)
H. Kim, Y. Park, I. Kim, J. Kim, H. Choi, W. Kim, Appl. Phys. A 104, 23 (2011)
J. Anaya, T. Rodríguez, J. Jiménez, Nanowires, Recent Advances (INTECH, Rijeka, ISBN980-953-307-525-4, 2012 (to be published))
J.Y. Duquesne, Phys. Rev. B 79, 153304 (2009)
Acknowledgements
This work was funded by the Spanish Government (MAT-2007-66181-C03 and MAT-2010-20441-C02) and by Junta de Castilla y León (VA051A06 -GR202).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Anaya, J., Torres, A., Martín-Martín, A. et al. Study of the temperature distribution in Si nanowires under microscopic laser beam excitation. Appl. Phys. A 113, 167–176 (2013). https://doi.org/10.1007/s00339-012-7509-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-012-7509-y
Keywords
- Laser Beam
- Absorption Efficiency
- Focus Laser Beam
- Local Heat Source
- Immersion Medium