Applied Physics A

, Volume 111, Issue 1, pp 91–97 | Cite as

Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

  • J. Hormes
  • A. Roy
  • G.-L. Bovenkamp
  • K. Simon
  • C.-Y. Kim
  • N. Börste
  • S. Gai
Invited paper


We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA–ICP–MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile—the most stable form of TiO2—but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds.


Rutile Synchrotron Radiation Inductively Couple Plasma Corrosion Layer Ketek 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T. Palomar, M. Garcia-Heras, M.A. Villegas, Bol. Soc. Esp. Cerám. 48, 187 (2009) Google Scholar
  2. 2.
    L. Bertrand, L. Robinet, M. Thoury, K. Janssens, S.X. Cohen, S. Schröder, Appl. Phys. A 106, 377 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    K.H. Wedepohl, K. Simon, A. Kronz, Archaeometry 53, 81 (2011) and references therein CrossRefGoogle Scholar
  4. 4.
    K.H. Wedepohl, K. Simon, Chem. Erde 70, 89 (2010) CrossRefGoogle Scholar
  5. 5.
    D.C. Koningsberger, R. Prins (eds.), X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (Wiley-Interscience, New York, 1988) Google Scholar
  6. 6.
    J. Stöhr, NEXAFS Spectroscopy (Springer, Berlin, 2003). Corrected edn Google Scholar
  7. 7.
    A. Di Cicco, A. Filipponi (eds.), 14th Int. Conf. X-ray Absorption Fine Structure (XAFS14). J. Phys. Conf. Ser., vol. 190 (IOP Publishing, Berlin, 2009) Google Scholar
  8. 8.
    G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, 2010) CrossRefGoogle Scholar
  9. 9.
    M. Cotte, J. Susini, J. Dik, K. Janssens, Acc. Chem. Res. 43, 705 (2010) CrossRefGoogle Scholar
  10. 10.
    B. Wagner, A. Nowak, E. Bulska, J. Kunicki-Goldfinger, O. Schalm, K. Janssens, Mikrochim. Acta 162, 415 (2008) CrossRefGoogle Scholar
  11. 11.
    U. Lobbedey, Die Ausgrabungen im Dom zu Paderborn 1978/80 und 1983, vols. 1–4 (Habelt, Bonn, 1986) Google Scholar
  12. 12.
    U. Lobbedey, K.H. Wedepohl, A. Kronz, in Studien zur Glasproduktion seit dem 12. Jahrhundert im östlichen Westfalen, ed. by R. Bergmann, Münster, 2008, pp. 121–133 Google Scholar
  13. 13.
    A. Roy, E. Morikawa, H. Bellamy, Ch. Kumar, J. Goettert, V. Suller, K. Morris, R. Kurtz, J. Scott, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 649, 15 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    M. Lemmonier, O. Collet, C. Depautex, J.M. Esteva, D. Raoux, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 152, 109 (1978) Google Scholar
  15. 15.
    B. Ravel, M. Newville, J. Synchrotron Radiat. 12, 537 (2005) CrossRefGoogle Scholar
  16. 16.
    D.M. Sanders, L.L. Hench, J. Am. Ceram. Soc. 56, 374 (1973) CrossRefGoogle Scholar
  17. 17.
    M. Perez, Y. Jorba, J.P. Dallas, C. Bauer, C. Bahezre, J.C. Martin, J. Mater. Sci. 15, 1640 (1980) ADSCrossRefGoogle Scholar
  18. 18.
    V.A. Solé, E. Papillon, M. Cotte, Ph. Walter, J. Susini, Spectrochim. Acta, Part B, At. Spectrosc. 62, 63 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    L. de Viguerie, A. Duran, A. Bouquillon, V.A. Sole, J. Castaing, P. Walter, Anal. Bioanal. Chem. 395, 2219 (2009) CrossRefGoogle Scholar
  20. 20.
    J. Zhu, Y. Yang, W. Xu, D. Chen, J. Dong, L. Wang, M. Glascock, X-Ray Spectrom. 41, 363 (2012) CrossRefGoogle Scholar
  21. 21.
    J. Sterpenich, G. Libourel, Chem. Geol. 174, 181 (2001) CrossRefGoogle Scholar
  22. 22.
    T. Lombardo, C. Loisel, L. Gentaz, A. Chabas, M. Verita, I. Pallot-Frossard, Corros. Eng. Sci. Technol. 45, 420 (2010) CrossRefGoogle Scholar
  23. 23.
    B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, J. Anal. At. Spectrom. 23, 814 (2008) CrossRefGoogle Scholar
  24. 24.
    D.A.H. Hanaor, Ch.C. Sorrell, J. Mater. Sci. 46, 855 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. Hormes
    • 1
    • 2
  • A. Roy
    • 2
  • G.-L. Bovenkamp
    • 2
  • K. Simon
    • 3
  • C.-Y. Kim
    • 1
  • N. Börste
    • 4
  • S. Gai
    • 5
  1. 1.Canadian Light Source Inc.University of SaskatchewanSaskatoonCanada
  2. 2.CAMDLouisiana State UniversityBaton RougeUSA
  3. 3.Geochemistry, Centre for GeosciencesUniversity of GöttingenGöttingenGermany
  4. 4.Faculty for Theology PaderbornPaderbornGermany
  5. 5.LWL—Archäologie für WestfalenMünsterGermany

Personalised recommendations