Skip to main content

Advertisement

Log in

Large thermal transport phase lagging improves thermoelectric efficiency

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A thermoelectric (TE) generator driven by fast pulse heating is theoretically analyzed using the hyperbolic transient heat conduction equation. Results show that heat leaking in the transient TE generator can be reduced due to the lagging behavior of non-Fourier heat conduction. The total energy conversion efficiency of the transient TE generator is found to exceed that of normal steady-state operation when the dimensionless non-Fourier thermal transport relaxation time, scaled by length squared over thermal diffusivity, is larger than one. These findings may emerge as a new way to improve TE efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, Nat. Mater. 10, 532 (2011)

    Article  ADS  Google Scholar 

  2. H.J. Goldsmid, Electronic Refrigeration (Pion, London, 1986)

    Google Scholar 

  3. O. Bubnova, Z. Ullah Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 10, 429 (2011)

    Article  ADS  Google Scholar 

  4. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nat. Mater. 11, 422 (2012)

    Article  ADS  Google Scholar 

  5. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004)

    Article  ADS  Google Scholar 

  6. B.C. Sales, D. Mandrus, R.K. Williams, Science 272, 1325 (1996)

    Article  ADS  Google Scholar 

  7. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)

    Article  ADS  Google Scholar 

  8. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)

    Article  ADS  Google Scholar 

  9. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  10. D.K. Taggart, Y. Yang, S.C. Kung, T.M. McIntire, R.M. Penner, Nano Lett. 11, 125 (2011)

    Article  ADS  Google Scholar 

  11. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  12. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, Z.F. Ren, Nano Lett. 8, 4670 (2008)

    Article  ADS  Google Scholar 

  13. P. Reddy, S.-Y. Jang, R. Segalman, A. Majumdar, Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  14. W. Kaminski, Inż. Chem. Proces. 9, 81 (1988)

    Google Scholar 

  15. W. Kaminski, J. Heat Transf. 112, 555 (1990)

    Article  Google Scholar 

  16. K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, J. Heat Transf. 117, 568 (1995)

    Article  Google Scholar 

  17. X.J. Hu, R. Prasher, K. Lofgreen, Appl. Phys. Lett. 91, 203113 (2007)

    Article  ADS  Google Scholar 

  18. K. Liu, S. Cui, X. Qi, J. Guo, C. Chen, X.J. Hu, Nanoscale Microscale Thermophys. (2012, submitted)

  19. K.K. Tamma, X. Zhou, J. Therm. Stresses 21, 405 (1998)

    Article  Google Scholar 

  20. D.Y. Tzou, J. Heat Transf. 117, 8 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from NSFC 50906064, DF of MOE 20100141110022, SYG 201132, and SRF for ROCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejiao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, K., Li, M., Cui, S. et al. Large thermal transport phase lagging improves thermoelectric efficiency. Appl. Phys. A 111, 477–481 (2013). https://doi.org/10.1007/s00339-012-7498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7498-x

Keywords

Navigation