Skip to main content
Log in

Large pure spin current generation in metallic nanostructures

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure spin current corresponds to the flow of spin angular momentum without associating any net charge current, and possesses potential to be incorporated in special functional and high-performance devices based on nonlocal spin injection. To utilize pure spin current in practical devices, it is imperative to increase the spin generation efficiency. In this article we discuss two special configurations of nonlocal devices, known as multi-terminal injector and nanopillar devices, which possess immense potential to overcome the Joule heating problem, the key bottleneck to enhance the pure spin current generation. We also demonstrate magnetization switching of a nanosized ferromagnet due to pure spin current injection in a nanopillar-based nonlocal device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. I. Zutic, I. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  3. C. Chappert, A. Fert, F. Nguyen van Dau, Nat. Mater. 6, 813 (2007)

    Article  ADS  Google Scholar 

  4. S. Maekawa, S.O.V. Valenzuela, E. Saitoh, T. Kimura (eds.), Spin Current (Oxford University Press, London, 2012)

    Google Scholar 

  5. W.P. Pratt, S.-F. Lee, J.M. Slaughter, R. Loloee, P.A. Schroeder, J. Bass, Phys. Rev. Lett. 66, 3060 (1991)

    Article  ADS  Google Scholar 

  6. A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)

    Article  ADS  Google Scholar 

  7. M. Johnson, R.H. Silsbee, Phys. Rev. B 35, 4959 (1987)

    Article  ADS  Google Scholar 

  8. F.J. Jedema, A.T. Filip, B.J. van Wees, Nature (London) 410, 345 (2001)

    Article  ADS  Google Scholar 

  9. S.O. Valenzuela, Int. J. Mod. Phys. B 23, 2413 (2009)

    Article  ADS  Google Scholar 

  10. T. Kimura, Y. Otani, J. Phys. Condens. Matter 19, 165216 (2007)

    Article  ADS  Google Scholar 

  11. Y. Otani, T. Kimura, Physica E 43, 735 (2011)

    Article  ADS  Google Scholar 

  12. A. Hoffmann, Phys. Status Solidi C 4, 4236 (2007)

    Article  ADS  Google Scholar 

  13. S.D. Bader, S.S.P. Parkin, Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010)

    Article  ADS  Google Scholar 

  14. S. Takahashi, S. Maekawa, Phys. Rev. B 67, 052409 (2003)

    Article  ADS  Google Scholar 

  15. T. Kimura, J. Hamrle, Y. Otani, Phys. Rev. B 72, 014461 (2005)

    Article  ADS  Google Scholar 

  16. T. Kimura, Y. Otani, J. Hamrle, Phys. Rev. Lett. 96, 037201 (2006)

    Article  ADS  Google Scholar 

  17. T. Yang, T. Kimura, Y. Otani, Nat. Phys. 4, 851 (2008)

    Article  Google Scholar 

  18. H. Zou, Y. Ji, J. Magn. Magn. Mater. 323, 2448 (2011)

    Article  ADS  Google Scholar 

  19. H. Zou, S. Chen, Y. Ji, Appl. Phys. Lett. 100, 012404 (2012)

    Article  ADS  Google Scholar 

  20. J.Z. Sun, M.C. Gaidis, E.J. O’Sullivan, E.A. Joseph, G. Hu, D.W. Abraham, J.J. Nowak, P.L. Trouilloud, Y. Lu, S.L. Brown, D.C. Worledge, W.J. Gallagher, Appl. Phys. Lett. 95, 083506 (2009)

    Article  ADS  Google Scholar 

  21. J.Z. Sun, Phys. Rev. B 62, 570 (2000)

    Article  ADS  Google Scholar 

  22. S. Nonoguchi, T. Nomura, T. Kimura, J. Appl. Phys. 111, 07C505 (2012)

    Article  Google Scholar 

  23. N. Poli, M. Urech, V. Korenivski, D.B. Haviland, J. Appl. Phys. 99, 08H701 (2006)

    Article  Google Scholar 

  24. S. Garzon, I. Zutic, R.A. Webb, Phys. Rev. Lett. 94, 176601 (2005)

    Article  ADS  Google Scholar 

  25. R. Godfrey, M. Johnson, Phys. Rev. Lett. 96, 136601 (2006)

    Article  ADS  Google Scholar 

  26. A. van Staa, J. Wulfhorst, A. Vogel, U. Merkt, G. Meier, Phys. Rev. B 77, 214416 (2008)

    Article  ADS  Google Scholar 

  27. M. Erekhinsky, A. Sharoni, F. Casanova, I.K. Schuller, Appl. Phys. Lett. 96, 022513 (2010)

    Article  ADS  Google Scholar 

  28. Y. Fukuma, L. Wang, H. Idzuchi, Y. Otani, Appl. Phys. Lett. 97, 012507 (2010)

    Article  ADS  Google Scholar 

  29. S.S. Parkin, Appl. Phys. Lett. 61, 1358 (1992)

    Article  ADS  Google Scholar 

  30. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, S.-H. Yang, Nat. Mater. 3, 862 (2004)

    Article  ADS  Google Scholar 

  31. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868 (2004)

    Article  ADS  Google Scholar 

  32. T. Kimura, N. Hashimoto, S. Yamada, M. Miyao, K. Hamaya, NPG Asia Mater. 4, e9 (2012)

    Article  Google Scholar 

  33. K. Hamaya, N. Hashimoto, S. Yamada, M. Miyao, T. Kimura, Phys. Rev. B 85, 100404(R) (2012)

    Article  ADS  Google Scholar 

  34. S. Nonoguchi, T. Nomura, T. Kimura, Appl. Phys. Lett. 100, 132401 (2012)

    Article  ADS  Google Scholar 

  35. T. Kimura, Y. Otani, J. Hamrle, Phys. Rev. B 73, 132405 (2006)

    Article  ADS  Google Scholar 

  36. J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996)

    Article  ADS  Google Scholar 

  37. E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Science 285, 867 (1999)

    Article  Google Scholar 

  38. G. Bridoux, M.V. Costache, J. Van de Vondel, I. Neumann, S.O. Valenzuela, Appl. Phys. Lett. 99, 102107 (2011)

    Article  ADS  Google Scholar 

  39. Y.K. Takahashi, S. Kasai, S. Hirayama, S. Mitani, K. Hono, Appl. Phys. Lett. 100, 052405 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Nomura and Mr. Nonoguchi for their experimental support. This work is partially supported by the Kurata foundation, NEDO and CREST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakaul, S.R., Hu, S. & Kimura, T. Large pure spin current generation in metallic nanostructures. Appl. Phys. A 111, 355–360 (2013). https://doi.org/10.1007/s00339-012-7495-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7495-0

Keywords

Navigation