Skip to main content
Log in

Non-equilibrium electronic Grüneisen parameter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electronic Grüneisen parameter, γ e , is a fundamental parameter characterizing the relationship between thermal expansion and electronic specific heat. Conventionally, γ e is measured at low temperatures for minimizing the lattice contribution to thermal expansion. In this paper, we extract γ e by separating the electron and lattice contributions in time domain using ultrashort pulse excitation. We show that γ e cannot be considered as a constant during the electron-lattice thermal nonequilibrium state. Instead, a revised expression for γ e is proposed for the non-equilibrium electron–phonon system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E. Grüneisen, Ann. Phys. 39, 257 (1912)

    Article  MATH  Google Scholar 

  2. T.H.K. Barron, J.G. Collins, G.K. White, Adv. Phys. 29, 609 (1980)

    Article  ADS  Google Scholar 

  3. P.G. Klemens, Phys. Rev. 120, 843 (1960)

    Article  ADS  Google Scholar 

  4. S. Visvanathan, Phys. Rev. 81, 626 (1951)

    Article  ADS  MATH  Google Scholar 

  5. R.S. Krishnan, R. Srinivasan, S. Devanarayanan, Thermal Expansion of Crystals (Pergamon Press, New Delhi, 1979)

    Google Scholar 

  6. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  7. C.-K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993)

    Article  ADS  Google Scholar 

  8. A.A. Maznev, J. Hohlfeld, J. Güdde, J. Appl. Phys. 82, 5082 (1997)

    Article  ADS  Google Scholar 

  9. H. Raether, Springer Tracts Mod. Phys. 111, 1–133 (1988)

    Article  Google Scholar 

  10. J.R. Sambles, G.W. Bradbery, F. Yang, Contemp. Phys. 32(3), 173 (1991)

    Article  ADS  Google Scholar 

  11. D.R. Lide, CRC Handbook of Chemistry and Physics, 82nd edn. (Chemical Rubber Company, Boca Raton, 2002)

    Google Scholar 

  12. B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999)

    Article  ADS  Google Scholar 

  13. T. Tsang, T. Srinivasan-Rao, J. Fischer, Phys. Rev. B 43, 8870 (1991)

    Article  ADS  Google Scholar 

  14. O.B. Wright, Phys. Rev. B 49, 9985 (1994)

    Article  ADS  Google Scholar 

  15. C. Guo, A.J. Taylor, Phys. Rev. B 64, 245106 (2001)

    Article  ADS  Google Scholar 

  16. H. Park, X. Wang, S. Nie, R. Clinite, J. Cao, Phys. Rev. B 72, 100301 (2005)

    Article  ADS  Google Scholar 

  17. J.M. Perner, S. Grésillon, J. März, G. von Plessen, J. Feldmann, J. Porstendorfer, K.-J. Berg, G. Berg, Phys. Rev. Lett. 85, 792 (2000)

    Article  ADS  Google Scholar 

  18. G. Tas, H.J. Maris, Phys. Rev. B 49, 15046 (1994)

    Article  ADS  Google Scholar 

  19. Y. Hamanaka, N. Hayashi, A. Nakamura, S. Omi, J. Lumin. 76–77, 21 (1998)

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge L. Novotny for assistance with experimental samples. This work was supported by the National Science Foundation and the Air Force Office of Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jincheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Guo, C. Non-equilibrium electronic Grüneisen parameter. Appl. Phys. A 111, 273–277 (2013). https://doi.org/10.1007/s00339-012-7488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7488-z

Keywords

Navigation