Skip to main content
Log in

Characterization of SiON/InP MOS structure with sulfidation, fluorination, and hydrogenation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Liquid phase deposited SiON film on InP with (NH4)2S treatment shows superior electrical characteristics due to the reduction of native oxides and sulfur passivation. Simultaneously, HF in SiON liquid phase deposition solution can effectively reduce residual native oxides on InP and provide fluorine passivation in SiON/InP film and interface. With post-metallization annealing (PMA), hydrogen ions can further passivate defects in SiON/InP film and interface. With these treatments, the PMA-LPD-SiON/(NH4)2S-treated InP MOS structure shows excellent electrical characteristics. With the physical thickness of 5.4 nm, the leakage current densities can be as low as 1.25×10−7 and 6.24×10−7 A/cm2 at ±2 V, and the interface state density is 3.25×1011 cm−2 eV−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Lebland, C. Licoppe, Y.I. Nissim, Appl. Phys. Lett. 72, 2802 (1992)

    Google Scholar 

  2. N. Konofaos, E.K. Evangelou, Semicond. Sci. Technol. 18, 56–59 (2003)

    Article  ADS  Google Scholar 

  3. K.F. Albertin, I. Pereyra, Microelectron. Eng. 77, 144 (2005)

    Article  Google Scholar 

  4. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel, J. Appl. Phys. 90, 2057 (2001)

    Article  ADS  Google Scholar 

  5. S.A. Campbell, D.C. Gilmer, X.C. Wang, M.T. Hsieh, H.S. Kim, W.L. Gladfelter, J.H. Yan, IEEE Trans. Electron Devices 44, 104 (1997)

    Article  ADS  Google Scholar 

  6. R. Lyer, R.R. Chang, A. Dubey, D.L. Lile, J. Vac. Sci. Technol. B 6, 1174 (1988)

    Article  ADS  Google Scholar 

  7. R. Suri, D.J. Lichtenwalner, V. Misra, Appl. Phys. Lett. 96, 112905 (2010)

    Article  ADS  Google Scholar 

  8. J. Robertson, Appl. Phys. Lett. 94, 152104 (2009)

    Article  ADS  Google Scholar 

  9. Y. Ishikawa, T. Fujui, H. Hasegawa, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 81, 1163 (1997)

    Article  ADS  Google Scholar 

  10. Y. Dong, X. Ding, X.Y. Hou, Appl. Phys. Lett. 77, 3839 (2000)

    Article  ADS  Google Scholar 

  11. M. Caymax, G. Brammertz, A. Delabie, S. Sioncke, D. Lin, M. Scarrozza, G. Pourtois, W. Wang, M. Meuris, M. Heyns, Microelectron. Eng. 86, 1529 (2009)

    Article  Google Scholar 

  12. T. Ito, T. Nozake, H. Ishikawa, J. Electrochem. Soc. 127, 2053 (1980)

    Article  Google Scholar 

  13. V. Ioannou-Sougleridis, P. Dimitrakis, V.Em. Vamvakas, P. Normand, C. Bonafos, S. Schamm, N. Cherkashin, G. Ben Assayag, M. Perego, M. Fancliulli, Appl. Phys. Lett. 90, 263513 (2007)

    Article  ADS  Google Scholar 

  14. M. Koutsoureli, N. Tavassolian, G. Papaioannou, J. Papapolymerou, Appl. Phys. Lett. 98, 093505 (2011)

    Article  ADS  Google Scholar 

  15. A. Rozenblat, Y. Rosenwaks, L. Segev, H. Cohen, Appl. Phys. Lett. 94, 053116 (2009)

    Article  ADS  Google Scholar 

  16. M.P. Houng, Y.H. Wang, C.J. Huang, S.P. Huang, J.H. Horng, Solid-State Electron. 44, 1917 (2000)

    Article  ADS  Google Scholar 

  17. M. Mattila, T. Hakkarainen, H. Lipsanen, H. Jiang, E.I. Kauppinen, Appl. Phys. Lett. 90, 033101 (2007)

    Article  ADS  Google Scholar 

  18. M.L. Reed, J.D. Plummer, J. Appl. Phys. 63, 5776 (1988)

    Article  ADS  Google Scholar 

  19. E. Cartier, J.H. Stathis, D.A. Buchanan, Appl. Phys. Lett. 63, 1510 (1993)

    Article  ADS  Google Scholar 

  20. H. Nagayama, H. Honda, H. Kawahara, J. Electrochem. Soc. 135, 2013 (1988)

    Article  Google Scholar 

  21. D.K. Basa, M. Bose, D.N. Bose, J. Appl. Phys. 87, 4324 (2000)

    Article  ADS  Google Scholar 

  22. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982), Chap. 15

    Google Scholar 

  23. E.K. Badih, J.B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization (Kluwer Academic, Dordrecht, 1986), pp. 340–341

    Google Scholar 

  24. M.L. Reed, J.D. Plummer, J. Appl. Phys. 63, 5776 (1988)

    Article  ADS  Google Scholar 

  25. J.H. Liao, J.Y. Hsieh, H.J. Lin, W.Y. Tang, C.L. Chiang, Y.S. Lo, T.B. Wu, L.W. Yang, T. Yang, K.C. Chen, C.Y. Lu, J. Phys. D, Appl. Phys. 42, 175102 (2009)

    Article  ADS  Google Scholar 

  26. Y. Tao, A. Yelon, E. Sacher, Z.H. Lu, M.J. Graham, Appl. Phys. Lett. 60, 2669 (1992)

    Article  ADS  Google Scholar 

  27. H.P. Song, A.L. Yang, H.Y. Wei, Y. Guo, B. Zhang, G.L. Zheng, S.Y. Yang, X.L. Liu, Q.S. Zhu, Z.G. Wang, T.Y. Yang, H.H. Wang, Appl. Phys. Lett. 94, 222114 (2009)

    Article  ADS  Google Scholar 

  28. T.K. Oh, C.H. Baek, B.K. Kang, Solid-State Electron. 48, 1549 (2004)

    Article  ADS  Google Scholar 

  29. M. Passlack, M. Hong, J.P. Mannaerts, J.R. Kwo, L.W. Tu, Appl. Phys. Lett. 68, 3605 (1996)

    Article  ADS  Google Scholar 

  30. M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, F. Ren, Appl. Phys. Lett. 69, 302 (1996)

    Article  ADS  Google Scholar 

  31. R.S. Besser, C.R. Helms, J. Appl. Phys. 65, 4306 (1989)

    Article  ADS  Google Scholar 

  32. C.K. Jung, D.C. Lim, H.G. Jee, M.G. Park, S.J. Ku, K.S. Yu, B. Hong, S.B. Lee, J.H. Boo, Surf. Coat. Technol. 171, 46 (2003)

    Article  Google Scholar 

  33. P.C. Jiang, Y.S. Lai, J.S. Chen, J. Electrochem. Soc. 153, G572 (2006)

    Article  Google Scholar 

  34. H. Sim, C.B. Samantaray, T. Lee, H. Yeom, H. Hwang, Jpn. J. Appl. Phys. 43, 7926 (2004)

    Article  ADS  Google Scholar 

  35. H.D. Lee, T. Feng, L. Yu, D. Mastrogiovanni, A. Wan, E. Garfunkel, T. Gustafsson, Phys. Status Solidi C 7, 260 (2010)

    Article  ADS  Google Scholar 

  36. K. Martens, W. Wang, K. De Keersmaecker, G. Borghs, G. Groeseneken, H. Maes, Microelectron. Eng. 84, 2146 (2007)

    Article  Google Scholar 

  37. L.M. Terman, Solid-State Electron. 5, 284 (1962)

    Article  ADS  Google Scholar 

  38. C.P. Chen, Y.J. Lee, Y.C. Chang, Z.K. Yang, M. Hong, J. Kwo, H.Y. Lee, T.S. Lay, Appl. Phys. Lett. 100, 104502 (2006)

    Google Scholar 

  39. L.K. Chu, C. Merckling, A. Alian, J. Dekoster, J. Kwo, M. Hong, M. Caymax, M. Heyns, Appl. Phys. Lett. 99, 042908 (2011)

    Article  ADS  Google Scholar 

  40. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1998), Chap. 5

    Google Scholar 

  41. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1982), Chaps. 8, 9

    Google Scholar 

  42. C.T. Sah, A.B. Tole, R.F. Pierret, Solid-State Electron. 12, 689 (1969)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Council of Republic of China for their support under Contract No. 101-2221-E-033-080-MY3-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Kwei Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MK., Yen, CF., Cheng, CH. et al. Characterization of SiON/InP MOS structure with sulfidation, fluorination, and hydrogenation. Appl. Phys. A 112, 1057–1062 (2013). https://doi.org/10.1007/s00339-012-7487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7487-0

Keywords

Navigation