Mapping prehistoric ghosts in the synchrotron

Abstract

The detailed chemical analysis of fossils has the potential to reveal great insight to the composition, preservation and biochemistry of ancient life. Such analyses would ideally identify, quantify, and spatially resolve the chemical composition of preserved bone and soft tissue structures, but also the embedding matrix. Mapping the chemistry of a fossil in situ can place constraints on mass transfer between the enclosing matrix and the preserved organism(s), and therefore aid in distinguishing taphonomic processes from original chemical zonation remnant within the fossils themselves. Conventional analytical methods, such as scanning electron microscopy (SEM) and pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) have serious limitations in this case, primarily, an inability to provide large (i.e., decimeter) scale chemical maps. Additionally, vacuum chamber size and the need for destructive sampling preclude analysis of large and precious fossil specimens. However, the recent development of Synchrotron Rapid Scanning X-ray Fluorescence (SRS-XRF) at the Stanford Synchrotron Radiation Lightsource (SSRL) allows the non-destructive chemical analysis and imaging of major, minor, and trace element concentrations of large paleontological and archeological specimens in rapid scanning times. Here we present elemental maps of a fossil reptile produced using the new SRS-XRF method. Our results unequivocally show that preserved biological structures are not simply impressions or carbonized remains, but possess a remnant of the original organismal biochemistry. We show that SRS-XRF is a powerful new tool for the study of paleontological and archaeological samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    C. Hardison, Proc. Natl. Acad. Sci. USA 93, 5675–5679 (1996)

    ADS  Article  Google Scholar 

  2. 2.

    K.E. van Holde, K.I. Miller, H. Decker, J. Biol. Chem. 276, 15563–15566 (2001)

    Article  Google Scholar 

  3. 3.

    P.H. Abelson, Science 119, 576 (1954)

    Article  Google Scholar 

  4. 4.

    P.H. Abelson, Sci. Am. 195, 83–92 (1956)

    ADS  Article  Google Scholar 

  5. 5.

    N.J. Butterfield, Paleobiology 16, 272–286 (1990)

    Google Scholar 

  6. 6.

    J.J. Brocks, G.A. Logan, R. Buick, R.E. Summons, Science 285, 1033–1036 (1999)

    Article  Google Scholar 

  7. 7.

    J.J. Brocks, R. Buick, R.E. Summons, G.A. Logan, Geochim. Cosmochim. Acta 67, 4321–4335 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    A. Treibs, Justus Liebigs Ann. Chem. 510, 42–62 (1934)

    Article  Google Scholar 

  9. 9.

    G. Eglinton, P.M. Scott, T. Belsky, A.L. Burlingame, M. Calvin, Science 145, 263–264 (1964)

    ADS  Article  Google Scholar 

  10. 10.

    B. Tissot, G. Deroo, A. Hood, Geochim. Cosmochim. Acta 42, 1469–1485 (1978)

    ADS  Article  Google Scholar 

  11. 11.

    B. Tissot, D.H. Welte, Petroleum Formation and Occurrence (Springer, Berlin, 1984)

    Google Scholar 

  12. 12.

    P.H. Ostrom, S.A. Macko, M.H. Engel, J.A. Silfer, D. Russell, Org. Geochem. 16, 1139–1144 (1990)

    Article  Google Scholar 

  13. 13.

    E.A. Cobabe, L.M. Pratt, Geochim. Cosmochim. Acta 59, 87–95 (1995)

    ADS  Article  Google Scholar 

  14. 14.

    H. Bocherens, M.L. Fogel, N. Tuross, M. Zeder, J. Archaeol. Sci. 22, 327–340 (1995)

    Article  Google Scholar 

  15. 15.

    T.H. O’Donnell, S.A. Macko, J. Chou, K.L. Davis-Hartten, J.F. Wehmiller, Org. Geochem. 34, 165–183 (2003)

    Article  Google Scholar 

  16. 16.

    M.H. Schweitzer, R. Avci, T. Collier, M.B. Goodwin, C. R., Palévol 7, 159–184 (2008)

    Article  Google Scholar 

  17. 17.

    M.M.W. Ulrich, W.R.K. Perizonius, C.F. Spoor, P. Sandberg, C. Vermeer, Biochem. Biophys. Res. Commun. 149, 712–719 (1987)

    Article  Google Scholar 

  18. 18.

    J.M. Lowenstein, G. Scheuenstuhl, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 333, 375–380 (1991)

    ADS  Article  Google Scholar 

  19. 19.

    G. Muyzer, P. Sandberg, M.H.J. Knapen, C. Vermeer, M. Collins, P. Westbroek, Geology 20, 871–874 (1992)

    ADS  Article  Google Scholar 

  20. 20.

    N. Tuross, L. Stathoplos, Molecular Evolution: Producing the Biochemical Data 224, 121–129 (1993)

    Article  Google Scholar 

  21. 21.

    S.R. Woodward, N.J. Weyand, M. Bunnell, Science 266, 1229–1232 (1994)

    ADS  Article  Google Scholar 

  22. 22.

    M.J. Collins, M.S. Riley, A.M. Child, G. Turnerwalker, J. Archaeol. Sci. 22, 175–183 (1995)

    Article  Google Scholar 

  23. 23.

    R.P. Evershed, G. Turnerwalker, R.E.M. Hedges, N. Tuross, A. Leyden, J. Archaeol. Sci. 22, 277–290 (1995)

    Article  Google Scholar 

  24. 24.

    B.A. Stankiewicz, D.E.G. Briggs, R.P. Evershed, Energy Fuels 11, 515–521 (1997)

    Article  Google Scholar 

  25. 25.

    B.A. Stankiewicz, D.E.G. Briggs, R.P. Evershed, M.B. Flannery, M. Wuttke, Science 276, 1541–1543 (1997)

    Article  Google Scholar 

  26. 26.

    M.H. Schweitzer, J.A. Watt, R. Avci, C.A. Forster, D.W. Krause, L. Knapp, R.R. Rogers, I. Beech, M. Marshall, J. Vertebr. Paleontol. 19, 712–722 (1999)

    Article  Google Scholar 

  27. 27.

    R. Avci, M.H. Schweitzer, R.D. Boyd, J.L. Wittmeyer, F.T. Arce, J.O. Calvo, Langmuir 21, 3584–3590 (2005)

    Article  Google Scholar 

  28. 28.

    J.M. Asara, M.H. Schweitzer, L.M. Freimark, M. Phillips, L.C. Cantley, Science 316, 280–285 (2007)

    ADS  Article  Google Scholar 

  29. 29.

    P.L. Manning, P.M. Morris, A. McMahon, E. Jones, A. Gize, J.H.S. Macquaker, G. Wolff, A. Thompson, J. Marshall, K.G. Taylor, T. Lyson, S. Gaskell, O. Reamtong, W.I. Sellers, B.E. van Dongen, M. Buckley, R.A. Wogelius, Proc. R. Soc. Lond. B, Biol. Sci. 276, 3429–3437 (2009)

    Article  Google Scholar 

  30. 30.

    K. Lepot, K. Benzerara, G.E. Brown, P. Philippot, Nat. Geosci. 1, 118–121 (2008)

    ADS  Article  Google Scholar 

  31. 31.

    N.S. Gupta, D.E.G. Briggs, M.E. Collinson, R.P. Evershed, R. Michels, R.D. Pancost, Org. Geochem. 38, 404–418 (2007)

    Article  Google Scholar 

  32. 32.

    M.W. Allaird, D. Young, Y. Huyen, Science 268, 1192 (1995)

    Article  Google Scholar 

  33. 33.

    M. Buckley, A. Walker, S.Y.W. Ho, Y. Yang, C. Smith, P. Ashton, J.T. Oates, E. Cappellini, H. Koon, K. Penkman, B. Elsworth, D. Ashford, C. Solazzo, P. Andrews, J. Strahler, B. Shapiro, P. Ostrom, H. Gandhi, W. Miller, B. Raney, M.I. Zylber, M.T.P. Gilbert, R.V. Prigodich, M. Ryan, K.F. Rijsdijk, A. Janoo, M.J. Collins, Science 319 (2008)

  34. 34.

    R.W. Morton, K.C. Witherspoon, in Advances in X-Ray Analysis, vol. 36, ed. by J.V. Gilfrich, T.C. Huang, C.R. Hubbard, M.R. James, R. Jenkins, G.R. Lachance, D.K. Smith, P.K. Predecki (Plenum, New York, 1993), pp. 97–104

    Google Scholar 

  35. 35.

    G.J. Havrilla, R.W. Morton, T.C. Miller, K.G. Huntley, 52nd Annual Denver X-Ray Conference Abstracts, vol. 212 (2003)

    Google Scholar 

  36. 36.

    U. Bergmann, R.W. Morton, P.L. Manning, W.I. Sellers, S. Farrar, K.G. Huntley, R.A. Wogelius, P. Larson, Proc. Natl. Acad. Sci. USA 107, 9060–9065 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    S.J.B. Reed, Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2nd edn. (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  38. 38.

    B.F.G. Popescu, M.J. George, U. Bergmann, A.V. Garachtchenko, M.E. Kelly, R.P.E. McCrea, K. Luning, R.M. Devon, G.N. George, A.D. Hanson, S.M. Harder, L.D. Chapman, I.J. Pickering, H. Nichol, Phys. Med. Biol. 54, 651–663 (2009)

    Article  Google Scholar 

  39. 39.

    U. Bergmann, Phys. World 20, 39–42 (2007)

    Google Scholar 

  40. 40.

    R.A. Wogelius, P.L. Manning, H.E. Barden, N.P. Edwards, S.M. Webb, W.I. Sellers, K.G. Taylor, P.L. Larson, P. Dodson, H. You, L. Da-qing, U. Bergmann, Science 333, 1622–1626 (2011)

    ADS  Article  Google Scholar 

  41. 41.

    N.P. Edwards, H.E. Barden, B.E. van Dongen, P.L. Manning, P.L. Larson, U. Bergmann, W.I. Sellers, R.A. Wogelius, Proc. R. Soc. Lond. B, Biol. Sci. 278, 3209–3218 (2011)

    Article  Google Scholar 

  42. 42.

    M.E. Wright, Nature 435, 257 (2005)

    Article  Google Scholar 

  43. 43.

    R.F. Service, Science 313, 744 (2006)

    Article  Google Scholar 

  44. 44.

    L. Hou, L.D. Martin, Z. Zhou, A. Feduccia, F. Zhang, Nature 399, 679–682 (1999)

    ADS  Article  Google Scholar 

  45. 45.

    M.C. Linder, Biochemistry of Copper, vol. 10 (Springer, Amsterdam, 1991)

    Google Scholar 

  46. 46.

    J.D. Simon, D. Peles, K. Wakamatsu, S. Ito, Pigment Cell & Melanoma Res. 22, 563–579 (2009)

    Article  Google Scholar 

  47. 47.

    Palumbo, M. d’Ischia, G. Misuraca, G. Prota, T.M. Schultz, Biochim. Biophys. Acta G, Gen. Subj. 964, 193–199 (1988)

    Article  Google Scholar 

  48. 48.

    S. Larsson, Pigment Cell Res. 6, 127–133 (1993)

    Article  Google Scholar 

  49. 49.

    K.J. McGraw, Oikos 102, 402–406 (2003)

    Article  Google Scholar 

  50. 50.

    M. Niecke, M. Heid, A. Kruger, J. Ornithol. 140, 355–362 (1999)

    Article  Google Scholar 

  51. 51.

    L. Grande, Paleontology of the Green River Formation, with a Review of the Fish Fauna, 2nd edn. (The Geological Survey, Wyoming, 1984)

    Google Scholar 

  52. 52.

    J.L. Conrad, J. Vertebr. Paleontol. 26, 113–126 (2006)

    Article  Google Scholar 

  53. 53.

    C.N. Trueman, D.M. Martill, Archaeometry 44, 371–382 (2002)

    Article  Google Scholar 

  54. 54.

    C.N. Trueman, N. Tuross, in Phosphates—Geochemical, Geobiological and Materials Importance, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Min. Soc. Am., Washington, 2002), pp. 489–521

    Google Scholar 

  55. 55.

    J.C. Elliott, in Phosphates—Geochemical, Geobiological and Materials Importance, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Min. Soc. Am., Washington, 2002), pp. 427–453

    Google Scholar 

  56. 56.

    M.J. Kohn, T.E. Cerling, in Phosphates—Geochemical, Geobiological and Materials Importance, vol. 48, ed. by M.J. Kohn, J. Rakovan, J.M. Hughes (Min. Soc. Am., Washington, 2002), pp. 455–488

    Google Scholar 

  57. 57.

    S. Weiner, P. Price, Calcif. Tissue Int. 39, 365–375 (1986)

    Article  Google Scholar 

  58. 58.

    J.O. Nriagu, Hydrobiologia 106, 217–222 (1983)

    Article  Google Scholar 

  59. 59.

    M.J. Collins, C.M. Nielsen-Marsh, J. Hiller, C.I. Smith, J.P. Roberts, R.V. Prigodich, T.J. Weiss, J. Csapo, A.R. Millard, G. Turner-Walker, Archaeometry 44, 383–394 (2002)

    Article  Google Scholar 

  60. 60.

    J.L. Conrad, O. Rieppel, L. Grande, J. Paleontol. 81, 1365–1373 (2007)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. L. Manning.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edwards, N.P., Wogelius, R.A., Bergmann, U. et al. Mapping prehistoric ghosts in the synchrotron. Appl. Phys. A 111, 147–155 (2013). https://doi.org/10.1007/s00339-012-7484-3

Download citation

Keywords

  • Synchrotron
  • SRS-XRF
  • X-Ray fluorescence
  • Green river formation