Skip to main content

TM waves in cylindrical superlattices (LANS) bounded by left-handed material (LHM)

Abstract

The investigation of TM wave propagation inside a cylindrical waveguide composed of antiferromagnetic/nonmagnetic superlattices (LANS), bounded by left-handed material (LHM), is presented. We have derived the eigenmode equation and obtained the solutions for TM propagation modes. We found that the waveguide supports backward TM waves since both electric permittivity and magnetic permeability of the LHM are negative. We also illustrated the dependence of the wave index n x on the magnetic fraction f 1 and the reduced radius of the LANS. The largest propagation lengths of TM waves and the best confinement are achieved for the thinnest LANS of less magnetic material. Moreover, we displayed the influence of the magnetic permeability μ h and the electric permittivity ε h of the LHM on the power flow of TM waves. Larger wave indices have been switched by increasing μ h and ε h .

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    L. Hu, S.T. Chui, Phys. Rev. B 66, 085108 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    V.G. Veselago, Sov. Phys., Solid State 8, 2854 (1967)

    Google Scholar 

  3. 3.

    V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    R.A. Shelby, D.R. Smith, S. Schultz, Appl. Phys. Lett. 78(4), 489 (2001)

    ADS  Article  Google Scholar 

  5. 5.

    N. Garcia, M. Nieto, Phys. Rev. Lett. 88(20), 207403 (2002)

    ADS  Article  Google Scholar 

  6. 6.

    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    W.T. Lu, S. Sridhar, Microw. Opt. Technol. Lett. 39, 282 (2003)

    Article  Google Scholar 

  8. 8.

    P. Vodo, W.T. Lu, Y. Huang, S. Sridhar, Appl. Phys. Lett. 89, 084104 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    C.G. Parazzoli, R.B. Greegor, K. Li, B.E. Koltenbah, M. Tanielian, Phys. Rev. Lett. 90, 107401 (2003)

    ADS  Article  Google Scholar 

  10. 10.

    P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature (London) 426, 404 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    C.M. Soukoulis, S. Linden, M. Wegener, Science 315(5808), 47 (2007)

    Article  Google Scholar 

  12. 12.

    D.R. Smith, J.B. Pendry, M.C. Wiltshire, Science 305, 788 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    J.D. Joannopoulos, R. Meade, J.N. Winn, Photonic Crystals: Modeling the Flow of Light (Princeton University Press, Princeton, 1995)

    Google Scholar 

  14. 14.

    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Start, D.R. Smith, Science 314, 977 (2006)

    ADS  Article  Google Scholar 

  15. 15.

    I.I. Smolyaninov, Y. Hung, C.C. Davis, Science 315, 1699 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    Y.J. Huang, W.T. Lu, S. Sridhar, Phys. Rev. A 77, 063836 (2008)

    ADS  Article  Google Scholar 

  17. 17.

    H.M. Mousa, M.M. Shabat, H. Khalil, D. Jager, Proc. SPIE 5445, 274 (2003)

    ADS  Google Scholar 

  18. 18.

    H.M. Mousa, M.M. Shabat, Int. J. Mod. Phys. B 19(29), 4359 (2005)

    ADS  MATH  Article  Google Scholar 

  19. 19.

    H.M. Mousa, M.M. Shabat, Int. J. Mod. Phys. B 21(6), 895 (2007)

    ADS  MATH  Article  Google Scholar 

  20. 20.

    M.M. Shabat, H.M. Mousa, Proc. SPIE 6582, 65820K-1 (2007)

    Google Scholar 

  21. 21.

    H.M. Mousa, Islamic Univ. J. 15(1), 147 (2007)

    Google Scholar 

  22. 22.

    M.C. Oliveros, N.S. Almeida, D.R. Tilley, J. Thomas, R.E. Camley, J. Phys. Condens. Matter 4(44), 8497 (1992)

    ADS  Article  Google Scholar 

  23. 23.

    X. Wang, D. Tilley, Phys. Lett. A 187(4), 325 (1994)

    ADS  Article  Google Scholar 

  24. 24.

    N. Almeida, D. Mills, Phys. Rev. B 38, 6698 (1988)

    ADS  Article  Google Scholar 

  25. 25.

    G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. M. Shabat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mousa, H.M., Shabat, M.M. TM waves in cylindrical superlattices (LANS) bounded by left-handed material (LHM). Appl. Phys. A 111, 1057–1063 (2013). https://doi.org/10.1007/s00339-012-7482-5

Download citation

Keywords

  • Magnetic Permeability
  • Power Flow
  • Electric Permittivity
  • Magnetic Fraction
  • Cylindrical Waveguide