Applied Physics A

, Volume 111, Issue 1, pp 135–145 | Cite as

Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

  • Miriam Unger
  • Eric Mattson
  • Catherine Schmidt Patterson
  • Zahrasadet Alavi
  • David Carson
  • Carol J. Hirschmugl


IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.


Cultural Heritage Point Spread Function Chemical Image Reflection Geometry Integration Window 



This work was supported by the US National Science Foundation under awards CHE-0832298, CHE-1112433 and DMR-0619759, the Research Growth Initiative of the University of Wisconsin-Milwaukee, and is based on research conducted at the Synchrotron Radiation Center, University of Wisconsin-Madison, which is supported by the National Science Foundation under award DMR-0537588 and by the University of Wisconsin- Milwaukee and the University of Wisconsin-Madison.


  1. 1.
    M.J. Nasse, M.J. Walsh, E.C. Mattson, R. Reininger, A. Kajdacsy-Balla, V. Macias, R. Bhargava, C.J. Hirschmugl, Nat. Methods 8, 413 (2011) CrossRefGoogle Scholar
  2. 2.
    M.J. Nasse, E.C. Mattson, R. Reininger, T. Kubala, S. Janowski, Z. El-Bayyari, C.J. Hirschmugl, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 649, 172 (2011) ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Reffner, P.A. Martoglio, G.P. Williams, Rev. Sci. Instrum. 66, 1298 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    S. Prati, E. Joseph, G. Sciutto, R. Mazzeo, Acc. Chem. Res. 43, 792 (2010) CrossRefGoogle Scholar
  5. 5.
    E. Joseph, S. Prati, G. Sciutto, M. Ioele, P. Santopadre, R. Mazzeo, Anal. Bioanal. Chem. 396, 899 (2010) CrossRefGoogle Scholar
  6. 6.
    R. Sloggett, C. Kyi, N. Tse, M.J. Tobin, L. Puskar, S.P. Best, Vib. Spectrosc. 53, 77 (2010) CrossRefGoogle Scholar
  7. 7.
    J.P. Echard, M. Cotte, E. Dooryhee, L. Bertrand, Appl. Phys. A 92, 77 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    G.D. Smith, J. Am. Inst. Conserv. 42, 399 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    N. Salvadó, S. Buti, M.J. Tobin, E. Pantos, A. Prag, T. Pradell, Anal. Chem. 77, 3444 (2005) CrossRefGoogle Scholar
  10. 10.
    N. Salvadó, S. Butí, E. Pantos, F. Bahrami, A. Labrador, T. Pradell, Appl. Phys. A 90, 67 (2007) ADSCrossRefGoogle Scholar
  11. 11.
    M. Cotte, P. Dumas, Y. Taniguchi, E. Checroun, P. Walter, J. Susini, Phys. Herit. 10, 590 (2009) Google Scholar
  12. 12.
    M. Cotte, E. Checroun, V. Mazel, V.A. Solé, P. Richardin, Y. Taniguchi, P. Walter, J. Susini, e-Preserv. Sci. 6, 1 (2009) Google Scholar
  13. 13.
    D. Creagh, A. Lee, V. Otieno-Alego, M. Kubik, Radiat. Phys. Chem. 78, 367 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    J.-P. Echard, L. Bertrand, A. von Bohlen, A.-S. Le Hô, C. Paris, L. Bellot-Gurlet, B. Soulier, A. Lattuati-Derieux, S. Thao, L. Robinet, B. Lavédrine, S. Vaiedelich, Angew. Chem., Int. Ed. Engl. 49, 197 (2010) CrossRefGoogle Scholar
  15. 15.
    A. Lluveras, S. Boularand, A. Andreotti, M. Vendrell-Saz, Appl. Phys. A 99, 363 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    L. Bertrand, L. Robinet, M. Thoury, K. Janssens, S.X. Cohen, S. Schöder, Appl. Phys. A 106, 377 (2012) ADSCrossRefGoogle Scholar
  17. 17.
    M. Cotte, E. Checroun, J. Susini, P. Walter, Appl. Phys. A 89, 841 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    J. Van der Weerd, H. Brammer, J.J. Boon, R.M.A. Heeren, Appl. Spectrosc. 56, 275 (2002) CrossRefGoogle Scholar
  19. 19.
    C. Ricci, S. Bloxham, S.G. Kazarian, J. Cult. Herit. 8, 387 (2007) CrossRefGoogle Scholar
  20. 20.
    M. Spring, C. Ricci, D.A. Peggie, S.G. Kazarian, Anal. Bioanal. Chem. 392, 37 (2008) CrossRefGoogle Scholar
  21. 21.
    E. Joseph, C. Ricci, S.G. Kazarian, R. Mazzeo, S. Prati, M. Ioele, Vib. Spectrosc. 53, 274 (2010) CrossRefGoogle Scholar
  22. 22.
    M.J. Nasse, B. Bellehumeur, S. Ratti, C. Olivieri, D. Buschke, J. Squirrell, K. Eliceiri, B. Ogle, C.S. Patterson, M. Giordano, C.J. Hirschmugl, Vib. Spectrosc. 60, 10 (2012) CrossRefGoogle Scholar
  23. 23.
    E.C. Mattson, M.J. Nasse, M. Rak, K.M. Gough, C.J. Hirschmugl, Anal. Chem. 84, 6173 (2012) CrossRefGoogle Scholar
  24. 24.
    M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965) Google Scholar
  25. 25.
    B.J. Davis, P.S. Carney, R. Bhargava, Anal. Chem. 82, 3474 (2010) CrossRefGoogle Scholar
  26. 26.
    L. Bertrand, F. Alban, M. Graham, Preservation of Plastics Artefacts in Museum Collections (Éditions du Comité des Travaux Historiques et Scientifiques, Paris, 2012) Google Scholar
  27. 27.
    M. Shin, K. Elert, The Use of Oxygen-Free Environments in the Control of Museum Insect Pests (The Getty Conservation Institute, Los Angeles, 2003) Google Scholar
  28. 28.
    C.M. Schmidt Patterson, D. Carson, A. Phenix, H. Khanjian, K. Trentelman, J. Mass, C. Hirschmugl, ePreserv. Sci. 9 (2012) submitted Google Scholar
  29. 29.
    H. Bechtel, M. Martin, T. May, P. Lerch, Rev. Sci. Instrum. 80, 126106 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    P. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectrometry. Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications (Wiley-Interscience, New York, 2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miriam Unger
    • 1
  • Eric Mattson
    • 1
  • Catherine Schmidt Patterson
    • 2
  • Zahrasadet Alavi
    • 3
  • David Carson
    • 2
  • Carol J. Hirschmugl
    • 1
  1. 1.Department of PhysicsUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.Getty Conservation InstituteLos AngelesUSA
  3. 3.College of Engineering and Applied ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations