Skip to main content
Log in

Hierarchical structured tungsten oxide nanocrystals via hydrothermal route: microstructure, formation mechanism and humidity sensing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hierarchical structured tungsten oxide nanocrystals were synthesized via the hydrothermal route assisted by a capping agent of ammonium benzoate (AB). The products were characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. The experimental results show that the crystal microstructures could be changed from flower-shape to star-shape by changing the mole ratio of ammonium benzoate to sodium tungstate (AB/ST). The crystal phases were changed from orthorhombic WO3⋅0.33H2O to hexagonal WO3 with the increase in the concentration of AB. Based on the results from Fourier transform infrared spectroscopy and time-dependent growth analysis, a self-assembly growth mechanism has been proposed for the formation of flower, spherical, and star-netted microstructures at different mole ratios of the AB/ST. The star-netted WO3 nanocrystals were applied as a sensitive layer for humidity sensing performed using a Love-mode ZnO/36 Y-cut LiTaO3 surface acoustic wave device, and a stable and sensitive response to the change of relative humidity was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Zhang, J. Xu, Q. Xiang, H. Li, Q. Pan, P. Xu, J. Phys. Chem. C 113, 3430 (2009)

    Article  Google Scholar 

  2. F. Sauvage, F. DiFonzo, A. LiBassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, M. Graetzel, Nano Lett. 10, 2562 (2010)

    Article  ADS  Google Scholar 

  3. F. Zhuge, J. Qiu, X. Li, X. Gao, X. Gan, W. Yu, Adv. Mater. 23, 1330 (2011)

    Article  Google Scholar 

  4. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, J. Mater. Chem. 14, 770 (2004)

    Article  Google Scholar 

  5. J.-H. Lee, Sens. Actuators B, Chem. 140, 319 (2009)

    Article  Google Scholar 

  6. Z. Jiao, J. Wang, K. Lin, X.W. Sun, H.V. Demir, ACS Appl. Mater. Interfaces 3, 229 (2011)

    Article  Google Scholar 

  7. Y.-L. Ma, L. Zhang, X.-F. Cao, X.-T. Chen, Z.-L. Xue, CrystEngComm 12, 1153 (2010)

    Article  Google Scholar 

  8. L.G. Teoh, Y.M. Hon, J. Shieh, W.H. Lai, M.H. Hon, Sens. Actuators B, Chem. 96, 219 (2003)

    Article  Google Scholar 

  9. S.K. Biswas, J.-O. Baeg, S.-J. Moon, K.-J. Kong, W.-W. So, J. Nanopart. Res. 14, 667 (2012)

    Article  Google Scholar 

  10. J. Yang, L. Jiao, Q. Zhao, Q. Wang, H. Gao, Q. Huan, W. Zheng, Y. Wang, H. Yuan, J. Mater. Chem. 22, 3699 (2012)

    Article  Google Scholar 

  11. G. Xi, J. Ye, Q. Ma, N. Su, H. Bai, C. Wang, J. Am. Chem. Soc. 134, 6508 (2012)

    Article  Google Scholar 

  12. Y. Zhang, Y. Chen, H. Liu, Y. Zhou, R. Li, M. Cai, X. Sun, J. Phys. Chem. C 113, 1746 (2009)

    Article  Google Scholar 

  13. L. Zhou, J. Zou, M. Yu, P. Lu, J. Wei, Y. Qian, Y. Wang, C. Yu, Cryst. Growth Des. 8, 3993 (2008)

    Article  Google Scholar 

  14. Z. Liu, M. Miyauchi, T. Yamazaki, Y. Shen, Sens. Actuators B, Chem. 140, 514 (2009)

    Article  Google Scholar 

  15. Z. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma, J. Yao, J. Phys. Chem. 110, 23829 (2006)

    Article  Google Scholar 

  16. J. Li, J. Huang, C. Yu, J. Wu, L. Cao, K. Yanagisawa, Chem. Lett. 40, 579 (2011)

    Article  Google Scholar 

  17. G. Sberveglieri, L. Depero, S. Groppelli, P. Nelli, Sens. Actuators B, Chem. 26, 89 (1995)

    Article  Google Scholar 

  18. Y. Baek, Y. Song, K. Yong, Adv. Mater. 18, 3105 (2006)

    Article  Google Scholar 

  19. D. Chen, J.H. Ye, Adv. Funct. Mater. 18, 1922 (2008)

    Article  Google Scholar 

  20. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  Google Scholar 

  21. Q. Qi, T. Zhang, X. Zheng, H. Fan, L. Liu, R. Wang, Y. Zeng, Sens. Actuators B, Chem. 134, 36 (2008)

    Article  Google Scholar 

  22. S.J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, Sens. Actuators B, Chem. 117, 442 (2006)

    Article  Google Scholar 

  23. E. Traversa, Sens. Actuators B, Chem. 23, 135 (1995)

    Article  Google Scholar 

  24. A.P. Shpak, A.M. Korduban, M.M. Medvedskij, V.O. Kandyba, J. Electron Spectrosc. Relat. Phenom. 156–158, 172 (2007)

    Article  Google Scholar 

  25. S.F. Ho, S. Contarini, J.W. Rabalais, J. Phys. Chem. 91, 4779 (1987)

    Article  Google Scholar 

  26. K. Senthil, K. Yong, Nanotechnology 18, 395604 (2007)

    Article  Google Scholar 

  27. F. Bussolotti, L. Lozzi, M. Passacantando, S. La Rosa, S. Santucci, L. Ottaviano, Surf. Sci. 538, 113 (2003)

    Article  ADS  Google Scholar 

  28. K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, D. He, J. Phys. D, Appl. Phys. 41, 155417 (2008)

    Article  ADS  Google Scholar 

  29. J. Zhu, S. Wang, S. Xie, H. Li, Chem. Commun. 47, 4403 (2011)

    Article  Google Scholar 

  30. M. Deepa, N. Sharma, P. Varshney, S.P. Varma, S.A. Agnihotry, J. Mater. Sci. 35, 5313 (2000)

    Article  ADS  Google Scholar 

  31. C. Balazsi, J. Pfeifer, Sol. Energy Mater. Sol. Cells 76, 577 (2003)

    Article  Google Scholar 

  32. L. Huo, H. Zhao, F. Mauvy, S. Fourcade, C. Labrugere, M. Pouchard, J.-C. Grenier, Solid State Sci. 6, 679 (2004)

    Article  ADS  Google Scholar 

  33. M. Deepa, M. Kar, S.A. Agnihotry, Thin Solid Films 468, 32 (2004)

    Article  ADS  Google Scholar 

  34. B. Orel, N. Groselj, U. Opara Krasovec, R. Jese, J. Sol-Gel Sci. Technol. 24, 5 (2002)

    Article  Google Scholar 

  35. Y.-S. Luo, W.-D. Zhang, X.-J. Dai, Y. Yang, S.-Y. Fu, J. Phys. Chem. C 113, 4856 (2009)

    Article  Google Scholar 

  36. J.-H. Ha, P. Muralidharan, D.K. Kim, J. Alloys Compd. 475, 446 (2009)

    Article  Google Scholar 

  37. A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtema, J.S. Lee, J. Mater. Chem. 20, 1683 (2010)

    Article  Google Scholar 

  38. H.-F. Pang, X. Xiang, Z.-J. Li, Y.-Q. Fu, X.-T. Zu, Phys. Status Solidi A 209, 537 (2012)

    Article  ADS  Google Scholar 

  39. S. Lei, C. Deng, Y. Chen, Y. Li, Sens. Actuators A, Phys. 167, 231 (2011)

    Article  Google Scholar 

  40. A.J. Ricco, S.J. Martin, Thin Solid Films 206, 94 (1991)

    Article  ADS  Google Scholar 

  41. S. Lei, D. Chen, Y. Chen, Nanotechnology 22, 265504 (2011)

    Article  Google Scholar 

  42. C. Caliendoy, E. Veronay, V.I. Anisimkin, Smart Mater. Struct. 6, 707 (1997)

    Article  ADS  Google Scholar 

  43. S.J. Ippolito, A. Ponzoni, K. Kalantar-Zadeh, W. Wlodarski, E. Comini, G. Faglia, G. Sberveglieri, Sens. Actuators B, Chem. 108, 553 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (ZYGX2009J046 and ZYGX2009X007), the Sichuan Young Scientists Foundation (2010JQ0006), the Royal Society-Research Grant (RG090609), Carnegie Trust Funding, Royal Society of Edinburgh, and Royal Academy of Engineering-Research Exchanges with China and India Awards.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Feng Pang or Xiao-Tao Zu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, HF., Li, ZJ., Xiang, X. et al. Hierarchical structured tungsten oxide nanocrystals via hydrothermal route: microstructure, formation mechanism and humidity sensing. Appl. Phys. A 112, 1033–1042 (2013). https://doi.org/10.1007/s00339-012-7475-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7475-4

Keywords

Navigation