Skip to main content
Log in

Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-performance supercapacitors with organic electrolyte 1 M TEABF4 (tetraethyl ammonium tetrafluoroborate) in PC (propylene carbonate) were fabricated and tested, based on multiwall carbon nanotubes (MWNTs) deposited by electrophoresis on three types of alternative substrates: aluminium foil, ITO (indium tin oxide) coated PET (polyethylene terephthalate) film and PET film. In all cases, SEM (scanning electron microscopy) and STEM (scanning transmission electron microscopy) micrographs demonstrated that protruding, transversely oriented MWNT structures were formed, which should increase the transverse conductivity of these MWNT electrodes. The best supercapacitor cell of MWNT electrodes deposited on aluminium foil displayed good transverse orientation of the MWNT structures as well as an in-plane MWNT network at the feet of the protruding structures, which ensured good in-plane conductivity. Capacitor cells with MWNT electrodes deposited either on ITO-coated PET film or on PET film demonstrated lower but still very good performance due to the high density of transversely oriented MWNT structures (good transverse conductivity) but some in-plane inhomogeneities. Capacitor cells with drop-printed MWNTs on aluminium foil, without any transverse orientation, had 16–30 times lower specific capacitance and 5–40 times lower power density than the capacitor cells with the electrophoretically deposited MWNT electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer, Berlin, 1999)

    Google Scholar 

  2. J. Huang, B.G. Sumpter, V. Meunier, Theoretical model for nanoporous carbon supercapacitors. Angew. Chem., Int. Ed. 47, 520 (2008)

    Article  Google Scholar 

  3. C. Lei, P. Wilson, C. Lekakou, “Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. J. Power Sources 196(18), 7823 (2011)

    Article  Google Scholar 

  4. A. Halama, B. Szubzda, G. Pasciak, Carbon aerogels as electrode material for electrical double layer supercapacitors—synthesis and properties. Electrochim. Acta 55, 7501 (2010)

    Article  Google Scholar 

  5. G. Wanga, Y. Linga, F. Qiana, X. Yanga, X.-X. Liub, Y. Li, Enhanced capacitance in partially exfoliated multi-walled carbon nanotubes. J. Power Sources 196, 5209 (2011)

    Article  Google Scholar 

  6. M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterisation for supercapacitor application. Int. J. Electrochem. Sci. 3, 96 (2008)

    Google Scholar 

  7. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1 (2011)

    Article  Google Scholar 

  8. P.J.F. Harris, Carbon nanotube composites. Int. Mater. Rev. 49(1), 31 (2004)

    Article  Google Scholar 

  9. M. Meyyapan (ed.), Carbon Nanotubes, Science and Applications (CRC Press, Boca Raton, 2004)

    Google Scholar 

  10. B. Zhang, J. Liang, C.L. Xu, B.Q. Wei, D.B. Ruan, D.H. Wu, Electric double-layer capacitors using carbon nanotube electrodes and organic electrolyte. Mater. Sci. Lett. 51, 539 (2001)

    Article  Google Scholar 

  11. J.H. Kim, K.-W. Nam, S.B. Ma, K.B. Kim, Fabrication and electrochemical properties of carbon nanotube electrodes. Carbon 44, 1963 (2006)

    Article  Google Scholar 

  12. A. Burke, M. Arulepp, Recent developments in carbon-based electrochemical capacitors: atatus of the technology and future prospects. Electrochem. Soc. Proc. 576 (2001), 2001 meeting

  13. Y. Chen, C. Liu, F. Li, H.-M. Cheng, Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 13, 141 (2006)

    Article  MATH  Google Scholar 

  14. A. Peigney, Ch. Laurent, E. Flahaut, R.R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4), 507 (2001)

    Article  Google Scholar 

  15. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003)

    Article  ADS  Google Scholar 

  16. N. Muraeu, E. Mendoza, S.R.P. Silva, In situ and real time determination of metallic and semi-conducting single-walled carbon nanotubes in suspension via dielectrophoresis. Appl. Phys. Lett. 88, 2431109 (2006)

    Google Scholar 

  17. C. Niu, E. Sichel, R. Hoch, D. Moy, H. Tennent, High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997)

    Article  ADS  Google Scholar 

  18. E. Frackowiak, K. Metenenier, V. Bertangna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421 (2000)

    Article  ADS  Google Scholar 

  19. C. Emmenegger, P. Mauron, P. Sudan, P. Wenger, V. Hermann, R. Gallay, A. Zuttel, Investigation of double-layer (EDLC) capacitors electrodes based on carbon nanotubes and activated carbon materials. J. Power Sources 124, 321 (2003)

    Article  Google Scholar 

  20. C. Lekakou, O. Moudam, F. Markoulidis, T. Andrews, J.F. Watts, G.T. Reed, Carbon-based fibrous EDLC capacitors and supercapacitors. J. Nanotechnol. 2011, (2011). doi:10.115/2011/409382

  21. H. Zhang, G. Gao, Y. Yang, Electrochemical properties of ultra-long, aligned, carbon nanotube array electrode in organic electrolyte. J. Power Sources 172, 476 (2007)

    Article  Google Scholar 

  22. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R.J. Linhardt, O. Nalamasu, P.M. Ajayan, Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104(34), 13574 (2007)

    Article  ADS  Google Scholar 

  23. C. Du, N. Pan, High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition. Nanotechnology 17, 5314 (2006)

    Article  ADS  Google Scholar 

  24. A.K. Murugesh, A. Uthayanan, C. Lekakou, Electrophoresis and orientation of multiple wall carbon nanotubes in polymer solution. Appl. Phys. A 100(1), 135 (2010)

    Article  ADS  Google Scholar 

  25. C.A. Martin, J.K.W. Sandler, A.H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877 (2005)

    Article  Google Scholar 

  26. R. Perez, Electronic Display Devices (TPR, Blue Ridge Summit, 1988)

    Google Scholar 

  27. B. Bahadur, Liquid Crystals, Applications and Uses, vol. 1 (World Scientific, Singapore, 1990)

    Google Scholar 

  28. M. Slater, Microprocessor-Based Design (Prentice Hall, New York, 1989)

    Google Scholar 

  29. N. Patil, A. Lin, E.R. Myers, K. Ryu, A. Badmaev, C. Zhou, H.-S.P. Wong, S. Mitra, Wafer-scale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans. Nanotechnol. 8(4), 498 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Lekakou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markoulidis, F., Lei, C. & Lekakou, C. Fabrication of high-performance supercapacitors based on transversely oriented carbon nanotubes. Appl. Phys. A 111, 227–236 (2013). https://doi.org/10.1007/s00339-012-7471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7471-8

Keywords

Navigation