Skip to main content
Log in

Influence of the static high magnetic field on the liquid–liquid phase separation during solidifying the hyper-monotectic alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic in-situ quenching refers to fixing and quenching the sample at a static high magnetic field (SHMF) up to 18 T; it has been achieved by a specially designed facility. Zn-7wt%Bi and Zn-10wt%Bi hyper-monotectic melts were quenched under different magnetic flux densities to investigate the influence of SHMF on the liquid–liquid phase separation process in solidifying hyper-monotectic alloys. Because this separation is mainly caused by the growth of minority phase droplets (Bi droplets in the present study), and such growth is attributed to the diffusion of Bi element and the coalescence between the droplets, the influence of SHMF on the growth of Bi droplets was analyzed. Results show that the imposed SHMF prevented the formation of layered structure in the Zn-10wt%Bi alloy and refined the Bi particles in the Zn-7wt%Bi alloy, which indicates that the SHMF retarded the liquid–liquid phase separation during solidifying the hyper-monotectic alloys. Indeed, the two motions of droplets in determining the coalescence, Marangoni migration and Stocks sedimentation, were slowed down by the applied SHMF. Analytical estimations of the magnitude of such damping effect have been made and show that the 18 T SHMF could reduce the speed of Stokes sedimentation and Marangoni migration of the minority phase droplets by about 95.5 % and 62.4 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.R. Rogers, R.H. Davis, Metall. Trans. A 21, 59 (1990)

    Google Scholar 

  2. M.H. Wu, A. Ludwing, L. Ratke, Model. Simul. Mater. Sci. Eng. 11, 755 (2003)

    Article  ADS  Google Scholar 

  3. W.F. Kaukler, D.O. Frazier, Nature 323, 50 (1986)

    Article  ADS  Google Scholar 

  4. Y.K. Zhang, J. Gao, C. Yang, M. Kolbe, S. Binder, D.M. Herlach, Mater. Lett. 73, 56 (2012)

    Article  Google Scholar 

  5. H. Tang, L.C. Wrobel, Z. Fan, Appl. Phys. A 81, 549 (2005)

    Article  ADS  Google Scholar 

  6. W. Yang, S.H. Chen, H. Yu, S. Li, F. Liu, G.C. Yang, Appl. Phys. A (2012). doi:10.1007/s00339-012-7090-4

    Google Scholar 

  7. J.Z. Zhao, H.L. Li, X.F. Zhang, J. He, Mater. Lett. 62, 3779 (2008)

    Article  Google Scholar 

  8. L. Ratke, S. Diefenbach, Mater. Sci. Eng. R 15, 263 (1995)

    Article  Google Scholar 

  9. B.K. Dhindaw, D.M. Stefanescu, A.K. Singh, P.A. Curreri, Metall. Trans. A 19, 2839 (1988)

    Article  Google Scholar 

  10. H. Yasuda, I. Ohnaka, S. Fujimoto, A. Sugiyama, Y. Hayashi, M. Yamamoto, A. Tsuchiyama, T. Nakano, K. Uesugi, K. Kishio, Mater. Lett. 58, 911 (2004)

    Article  Google Scholar 

  11. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, A. Garcia, Mater. Des. 31, 4584 (2010)

    Article  Google Scholar 

  12. P.L. Schaffer, R.H. Mathiesen, L. Arnberg, Acta Mater. 57, 2887 (2009)

    Article  Google Scholar 

  13. S. Curiotto, N.H. Pryds, E. Johnson, L. Battezzati, Mater. Sci. Eng. A 449–451, 644 (2007)

    Google Scholar 

  14. J. He, J.Z. Zhao, X.F. Wang, Q.X. Zhang, H.L. Li, G.Y. Chen, Acta Metall. Sin. 43, 561 (2007)

    Google Scholar 

  15. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Science 297, 990 (2002)

    Article  ADS  Google Scholar 

  16. E. Bosco, P. Rizzi, M. Baricco, J. Magn. Magn. Mater. 262, 64 (2003)

    Article  ADS  Google Scholar 

  17. R.G. Dai, S.G. Zhang, X. Guo, J.G. Li, Mater. Lett. 65, 322 (2011)

    Article  Google Scholar 

  18. M. Garnier, ISIJ Int. 30, 1 (1990)

    Article  Google Scholar 

  19. S. Molokov, R. Moreau, H.K. Moffatt, Magnetohydrodynamics: Historical Evolution and Trends, 1st edn. (Springer, Dordrecht, 2007), pp. 315–327

    Book  Google Scholar 

  20. W.G. Pfann, D. Dorsi, Rev. Sci. Instrum. 28, 720 (1957)

    Article  ADS  Google Scholar 

  21. W.J. de Haas, J.B. Westerdijk, Nature 158, 271 (1946)

    Article  ADS  Google Scholar 

  22. X. Li, Z.M. Ren, G.H. Cao, Y. Fautrelle, C. Esling, Acta Mater. 59, 6297 (2011)

    Article  Google Scholar 

  23. S. Asai, ISIJ Int. 47, 519 (2007)

    Article  Google Scholar 

  24. X. Li, Y. Fautrelle, Z.M. Ren, Scr. Mater. 59, 407 (2008)

    Article  Google Scholar 

  25. Y.D. Zhang, C. Esling, J. Muller, C.S. He, X. Zhao, L. Zuo, Appl. Phys. Lett. 87, 212504 (2005)

    Article  ADS  Google Scholar 

  26. R. Moreau, O. Laskar, M. Tanaka, Mater. Sci. Eng. A 173, 93 (1993)

    Article  Google Scholar 

  27. X. Li, A. Gagnoud, Z.M. Ren, Y. Fautrelle, R. Moreau, Acta Mater. 57, 2180 (2009)

    Article  Google Scholar 

  28. W.C. Levengood, Nature 177, 632 (1956)

    Article  ADS  Google Scholar 

  29. U. Bardi, C. Borri, A. Lavacchi, A. Tolstogouzov, E.B. Trunin, O.E. Trunina, Scr. Mater. 60, 423 (2009)

    Article  Google Scholar 

  30. Q. Wang, X.J. Pang, C.J. Wang, T. Liu, D.G. Li, J.C. He, Mater. Sci. Forum 539–543, 457 (2007)

    Article  Google Scholar 

  31. X. Liu, L.J. Liu, Z.Y. Li, Y. Wang, J. Cryst. Growth 360, 38 (2012)

    Article  ADS  Google Scholar 

  32. D. Samanta, N. Zabaras, Int. J. Heat Mass Transf. 49, 4850 (2006)

    Article  MATH  Google Scholar 

  33. H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno, K. Kishio, ISIJ Int. 43, 942 (2003)

    Article  Google Scholar 

  34. S. Yang, W.J. Liu, Mater. Sci. 36, 5351 (2001)

    Article  ADS  Google Scholar 

  35. J.J. Guo, Y. Liu, J. Jia, Y.Q. Su, H.S. Ding, J.Z. Zhao, X. Xue, Scr. Mater. 45, 1197 (2001)

    Article  Google Scholar 

  36. H. Neumann, Y. Plevachuk, F. Allenstein, Mater. Sci. Eng. A 361, 155 (2003)

    Article  Google Scholar 

  37. J.Z. Zhao, L. Ratke, Scr. Mater. 50, 543 (2004)

    Article  Google Scholar 

  38. N.O. Young, J.S. Goldstein, M.J. Block, J. Fluid Mech. 6, 350 (1959)

    Article  ADS  MATH  Google Scholar 

  39. L. Ratke, P.W. Voorhees, Growth and Coarsening, 1st edn. (Springer, New York, 2002), pp. 239–249

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported partly by the National Science Foundation of China (No. 50974085), Shanghai Foundation for Development of Scientists (No. 2009046), Research Fund for the Doctoral Program of Higher Education of China (No. 20093108110012) and program EuroMagNET II (under EU contract No. 228043). The authors acknowledge Prof. Li Xi in Shanghai University for his fruitful help during the experiment and the first author personally acknowledges the scholarship from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. B. Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Zhong, Y.B., Fautrelle, Y. et al. Influence of the static high magnetic field on the liquid–liquid phase separation during solidifying the hyper-monotectic alloys. Appl. Phys. A 112, 1027–1031 (2013). https://doi.org/10.1007/s00339-012-7470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7470-9

Keywords

Navigation