Advertisement

Applied Physics A

, Volume 112, Issue 4, pp 1019–1025 | Cite as

Phase separation in ternary charge-transfer-complexes

  • Diana Nanova
  • Sebastian Beck
  • Milan Alt
  • Tobias Glaser
  • Annemarie Pucci
  • Katrin Schultheiß
  • Levin Dieterle
  • Rasmus R. Schröder
  • Jens Pflaum
  • Wolfgang Kowalsky
  • Michael Kroeger
Article
  • 475 Downloads

Abstract

Mixing of different organic charge-transfer-complexes (CT-complexes) might allow the adjustment of the optical and morphological properties of the resulting material system. In this work, a study of two CT-complexes, mixed by thermal coevaporation at different concentrations by substituting only the acceptor molecules, is presented. Electron diffraction patterns, which were collected on samples of the ternary system of the prototypical CT-complexes DBTTF-TCNQ and DBTTF-F4TCNQ do not show any indication of a mixed crystalline phase or novel crystalline order. X-ray diffraction measurements additionally confirm the phase separation in the ternary system. However, upon mixing of the complexes, the degree of crystallinity of the individual phases is reduced. This effect correlates with the mixing ratio of the CT-complexes in the ternary compound. Furthermore, we do not observe a shift or the appearance of new peaks in the infrared spectra of (DBTTF-TCNQ) x :(DBTTF-F4TCNQ)1−x . Hence, there is no indication for a pronounced or novel chemical interaction between the individual CT-complexes in the mixed compound.

Keywords

Ternary Compound Diffraction Spot TCNQ Single Crystal Structure Diffraction Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the German Federal Ministry of Education and Research (BMBF) (FKZ 13N10794, FKZ 13N10724) and the Deutsche Forschungsgemeinschaft (SPP1355-Project PF385/4) for the financial support.

References

  1. 1.
    L.B. Coleman, M.J. Cohen, D.J. Sandman, F.G. Yamagishi, A.F. Garito, A.J. Heeger, Superconducting fluctuations and the Peierls instability in an organic solid. Solid State Commun. 12(11), 1125–1132 (1973) ADSCrossRefGoogle Scholar
  2. 2.
    H. Alves, A.S. Molinari, H. Xie, A.F. Morpurgo, Metallic conduction at organic charge-transfer interfaces. Nat. Mater. 7(7), 574–580 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    D. Jérome, A. Mazaud, M. Ribault, K. Bechgaard, Superconductivity in a synthetic organic conductor (tmtsf)2pf6. J. Phys. Lett. 41(4), 95–98 (1980) CrossRefGoogle Scholar
  4. 4.
    D. Jérome, Organic conductors: from charge density wave ttf-tcnq to superconducting (tmtsf)2pf6. Chem. Rev. 104(11), 5565–5592 (2004). PMID: 15535660 CrossRefGoogle Scholar
  5. 5.
    S. Mazumdar, A.N. Bloch, Systematic trends in short-range coulomb effects among nearly one-dimensional organic conductors. Phys. Rev. Lett. 50(3), 207–211 (1983) ADSCrossRefGoogle Scholar
  6. 6.
    R.M. Metzger, The enthalpy of formation and the experimental crystal binding energy of tetrathiofulvalenium 7,7,8,8-tetracyanoquinodimethanide (ttf tcnq). J. Chem. Phys. 66(6), 2525–2533 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Takahashi, T. Hasegawa, Y. Abe, Y. Tokura, G. Saito, Organic metal electrodes for controlled p- and n-type carrier injections in organic field-effect transistors. Appl. Phys. Lett. 88(7), 073504 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    T.J. Emge, W.A. Bryden, F.M. Wiygul, D.O. Cowan, T.J. Kistenmacher, A.N. Bloch, Structure of an organic charge-transfer salt derived from dibenzotetrathiafulvalene and tetrafluorotetracyanoquinodimethane (dbttf–tcnqf4). Observation of a high-temperature phase transition. J. Chem. Phys. 77(6), 3188–3197 (1982) ADSCrossRefGoogle Scholar
  9. 9.
    D. Nanova, S. Beck, A. Fuchs, T. Glaser, C. Lennartz, W. Kowalsky, A. Pucci, M. Kroeger, Charge transfer in thin films of donor-acceptor complexes studied by infrared spectroscopy. Org. Electron. 13(7), 1237–1244 (2012) CrossRefGoogle Scholar
  10. 10.
    D.B. Tanner, C.S. Jacobsen, A.F. Garito, A.J. Heeger, Infrared studies of the energy gap in tetrathiafulvalene-tetracyanoquinodimethane (ttf-tcnq). Phys. Rev. B 13(8), 3381–3404 (1976) ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Torrance, J.E. Vazquez, J.J. Mayerle, V.Y. Lee, Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 46(4), 253–257 (1981) ADSCrossRefGoogle Scholar
  12. 12.
    M. Kroeger, personal communication (2012) Google Scholar
  13. 13.
    R. Jones, M.T. Sandman, D.J. Kellerman, A. Troup, ESR studies of pure and doped samples of dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) Mol. Cryst. Liq. Cryst. 85, 277–283 (1982) CrossRefGoogle Scholar
  14. 14.
    R.R. Lunt, K. Sun, M. Kröger, J.B. Benziger, S.R. Forrest, Ordered organic-organic multilayer growth. Phys. Rev. B 83(6), 064114 (2011) ADSCrossRefGoogle Scholar
  15. 15.
    Kobayashi, The crystal structure of the charge-transfer complex of dibenzotetrathiafulvalene-tetracyanoquinodimethane, dbttf-tcnq. Bull. Chem. Soc. Jpn. (1981) Google Scholar
  16. 16.
    C. Kittel, Introduction to Solid State. Wiley-VCH Google Scholar
  17. 17.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243), 1789–1791 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    A. Opitz, B. Ecker, J. Wagner, A. Hinderhofer, F. Schreiber, J. Manara, J. Pflaum, W. Bruetting, Mixed crystalline films of co-evaporated hydrogen- and fluorine-terminated phthalocyanines and their application in photovoltaic devices. Org. Electron. 10(7), 1259–1267 (2009) CrossRefGoogle Scholar
  19. 19.
    H. Bürckstümmer, E.V. Tulyakova, M. Deppisch, M.R. Lenze, N.M. Kronenberg, M. Gsänger, M. Stolte, K. Meerholz, F. Würthner, Efficient solution-processed bulk heterojunction solar cells by antiparallel supramolecular arrangement of dipolar donor–acceptor dyes. Angew. Chem., Int. Ed. Engl. 50(49), 11628–11632 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diana Nanova
    • 1
    • 4
    • 5
  • Sebastian Beck
    • 1
    • 5
  • Milan Alt
    • 1
    • 5
  • Tobias Glaser
    • 1
    • 5
  • Annemarie Pucci
    • 1
    • 5
  • Katrin Schultheiß
    • 2
    • 5
  • Levin Dieterle
    • 2
    • 4
    • 5
  • Rasmus R. Schröder
    • 2
    • 5
  • Jens Pflaum
    • 3
  • Wolfgang Kowalsky
    • 4
    • 5
  • Michael Kroeger
    • 1
    • 4
    • 5
  1. 1.Kirchhoff-Institute for PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.CellNetworks, BioQuantUniversity of HeidelbergHeidelbergGermany
  3. 3.Institute for Experimental Physics VI and ZAE BayernUniversity of WuerzburgWuerzburgGermany
  4. 4.Institute for High-Frequency TechnologyTechnical University of BraunschweigBraunschweigGermany
  5. 5.InnovationLab GmbHHeidelbergGermany

Personalised recommendations