Skip to main content
Log in

Nanoscale gap filling for phase change material by pulsed deposition and inductively coupled plasma etching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The gap filling of phase change material has become a critical module in the fabrication process of phase change random access memory (PCRAM) as the device continues to scale down to 45 nm and below. However, conventional physical vapor deposition process cannot meet the nanoscale gap fill requirement anymore. In this study, we found that the pulsed deposition followed by inductively coupled plasma etching process showed distinctly better gap filling capability and scalability than single-step deposition process. The gap filling mechanism of the deposit–etch–deposit (DED) process was briefly discussed. The film redeposition during etching step was the key ingredient of gap filling improvement. We achieved void free gap filling of phase change material on the 30 nm via with aspect ratio of 1:1 by two-cycle DED process. The results provided a rather comprehensive insight into the mechanism of DED process and proposed a potential gap filling solution for 45 nm and below technology nodes for PCRAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Feinleib, J. de Neufville, S.C. Moss, S.R. Ovshinsky, Appl. Phys. Lett. 18, 254 (1971)

    Article  ADS  Google Scholar 

  2. D. Adler, M.S. Shur, M. Silver, S.R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980)

    Article  ADS  Google Scholar 

  3. J.P. Reifenberg, M.A. Panzer, S.B. Kim, A.M. Gibby, Y. Zhang, S. Wong, H.S.P. Wong, E. Pop, K.E. Goodson, Appl. Phys. Lett. 91, 111904 (2007)

    Article  ADS  Google Scholar 

  4. S. Lai, T. Lowrey, OUM-A180 nm nonvolatile memory cell element technology for stand alone and embedded applications, in IEDM Tech. Dig., Session 36.5 (2001)

    Google Scholar 

  5. S. Lai, Current status of the phase-change memory and its future, in IEDM Tech. Dig. (2003), p. 255

    Google Scholar 

  6. S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.Y. Lee, J.H. Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H. Koh, G.T. Jeong, H.S. Jeong, K. Kim, B.I. Ryu, in IEDM Tech. Dig., Session 2.99 (2005)

    Google Scholar 

  7. S.K. Kang, M.H. Jeon, J.Y. Park, G.Y. Yeom, M.S. Jhon, B.W. Koo, Y.W. Kim, J. Electrochem. Soc. 158, 768 (2011)

    Article  Google Scholar 

  8. S.K. Kang, M.H. Jeon, J.Y. Park, M.S. Jhon, G.Y. Yeom, Jpn. J. Appl. Phys. 50, 086501 (2011)

    Article  ADS  Google Scholar 

  9. E.A. Joseph, T.D. Happ, S.H. Chen, S. Raoux, C.F. Chen, M. Breitwisch, A.G. Schrott, S. Zaidi, R. Dasaka, B. Yee, Y. Zhu, R. Bergmann, H.L. Lung, C. Lam, Patterning of N:Ge2Sb2Te5 films and the characterization of etch induced modification for non-volatile phase change memory applications, in VLSI Tech. (2008), p. 142

    Google Scholar 

  10. A. Abrutis, V. Plausinaitiene, M. Skapas, C. Wiemer, O. Salicio, M. Longo, A. Pirovano, J. Siegel, W. Gawelda, S. Rushworth, C. Giesen, Microelectron. Eng. 85, 2338 (2009)

    Article  Google Scholar 

  11. B.J. Choi, S. Choi, T. Eom, S.W. Ryu, D.Y. Cho, J. Heo, H.J. Kim, C.S. Hwang, Y.J. Kim, S.K. Hong, Chem. Mater. 21, 2386 (2009)

    Article  Google Scholar 

  12. J.F. Zheng, J. Reed, C. Schell, W. Czubatyj, R. Sandoval, J. Fournier, W. Li, W. Hunks, C. Dennison, S. Hudgens, T. Lowrey, IEEE Electron Device Lett. 31, 999 (2010)

    Article  ADS  Google Scholar 

  13. D. Reso, M. Silinskas, B. Kalkofen, M. Lisker, E.P. Burte, J. Electrochem. Soc. 158, 187 (2011)

    Article  Google Scholar 

  14. C.C. Huang, B. Gholipour, J.Y. Ou, K. Knight, D.W. Hewak, Electron. Lett. 47, 288 (2011)

    Article  Google Scholar 

  15. M. Ritala, V. Pore, T. Hatanpaa, M. Heikkil, M. Leskel, K. Mizohata, A. Schrott, S. Raoux, S.M. Rossnagel, Microelectron. Eng. 86, 1946 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by National Key Basic Research Program of China (2010CB934300, 2011CBA00607, 2011CB9328004), National Integrate Circuit Research Program of China (2009ZX02023-003), National Natural Science Foundation of China (60906004, 60906003, 61006087, 61076121, 61176122, 61106001), Science and Technology Council of Shanghai (11DZ2261000, 11QA1407800), Chinese Academy of Sciences (20110490761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. C. Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W.C., Liu, B., Song, Z.T. et al. Nanoscale gap filling for phase change material by pulsed deposition and inductively coupled plasma etching. Appl. Phys. A 112, 999–1002 (2013). https://doi.org/10.1007/s00339-012-7463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7463-8

Keywords

Navigation