Skip to main content
Log in

Anisotropic properties and conduction mechanism of TlInSe2 chain semiconductor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TlInSe2 chain crystals were prepared using the modification of the Bridgman technique. The grown crystals were identified by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). We investigate the anisotropy of transport properties for the first time for TlInSe2 crystals. Temperature dependence of the dc electrical conductivity, Hall coefficient, Hall mobility, and charge carrier concentration were investigated in the temperature range 184–455 K. The conduction mechanism of TlInSe2 crystals was studied, and measurements revealed that the dc behavior of the grown crystals can be described by Mott’s variable range hopping (VRH) model in the low temperature range, while it is due to thermoionic emission of charge carriers over the chain boundaries above 369 K. The Mott temperature, the density of states at the Fermi level, and the average hopping distance are estimated in the two crystallographic directions. The temperature dependence of the ac conductivity and the frequency exponent, s, is reasonably well interpreted in terms of the correlated barrier-hopping CBH model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Muller, H. Hahn, Z. Anorg. Allg. Chem. 438, 272 (1978)

    Article  Google Scholar 

  2. S.N. Mustafaeva, V.A. Ramazanzade, M.M. Asadov, Mater. Chem. Phys. 40, 142 (1995)

    Article  Google Scholar 

  3. J.A. Kalomiros, N. Kalkan, M. Hanias, A.N. Anagnostopoulos, K. Kambas, Solid State Commun. 96(8), 601 (1995)

    Article  ADS  Google Scholar 

  4. M.P. Hanias, A.N. Anagnotstopoulos, Phys. Rev. B 47, 4261 (1993)

    Article  ADS  Google Scholar 

  5. G. Orudzhev, N. Mamedov, H. Uchiki, N. Yamamoto, S. Iida, H. Toyota, E. Gojaef, F. Hashimzade, J. Phys. Chem. Solids 64, 1703 (2003)

    Article  ADS  Google Scholar 

  6. S.G. Abdinova, I.V. Alekseev, Nucl. Instrum. Methods Phys. Res., Sect. A 411, 365 (1998)

    Article  ADS  Google Scholar 

  7. Ch. Karakotsou, A.N. Anagnostopoulos, Physica D 93, 157 (1996)

    Article  Google Scholar 

  8. D.I. Ismailov, R.M. Sultanov, F.I. Aliyev, R.B. Shafizade, Thin Solid Films 205, 1 (1991)

    Article  ADS  Google Scholar 

  9. Ch. Karakotsou, A.N. Anagnostopoulos, K. Kambas, J. Spyridelis, Mater. Res. Bull. 30, 4261 (1995)

    Article  Google Scholar 

  10. G.D. Guseinov, V.A. Aliyev, A.U. Malsagov, L.M. Chapanova, Mater. Res. Bull. 21, 507 (1986)

    Article  Google Scholar 

  11. K.R. Allakhverdiev, N.Y. Safarov, M.A. Nizametdinova, E.A. Vinogradov, N.N. Melnik, A.F. Goncharov, S.I. Subbotin, Solid State Commun. 42, 485 (1982)

    Article  ADS  Google Scholar 

  12. A.G. Abdullaev, V.K. Aliev, Mater. Res. Bull. 15, 1361 (1980)

    Article  Google Scholar 

  13. G.D. Guseinov, G.G. Guseinov, E.M. Kerimova, M.Z. Ismailov, V.D. Rustamov, L.A. Rzajeva, Mater. Res. Bull. 13, 975 (1978)

    Article  Google Scholar 

  14. G.D. Guseinov, A.G. Abdullayev, M.Z. Ismailov, V.D. Rustamov, Mater. Res. Bull. 12, 115 (1977)

    Article  Google Scholar 

  15. I. Samaras, K. Kambas, C. Julien, Mater. Res. Bull. 25, 1 (1990)

    Article  Google Scholar 

  16. G.D. Guseinov, S.N. Mustafayeva, E.F. Bagirzade, E.G. Abdullayev, S.G. Guseinov, Solid State Commun. 55, 991 (1985)

    Article  ADS  Google Scholar 

  17. K.R. Allakhverdiev, T.G. Mamedov, E.Y. Salaev, I.K. Efendieva, Fiz. Teh. Poluprovodn. 18, 519 (1984)

    Google Scholar 

  18. M. Kojiro, N. Takafumi, A. Koji, W. Kazuki, A. Masashi, N. Mamedov, O. Guseyn, N. Hirofumi, T. Masaki, T. Yukihiro, L. Kouichi, Jpn. J. Appl. Phys. 47, 8188 (2008)

    Article  Google Scholar 

  19. A.U. Sheleg, V.G. Hurtavy, S.N. Mustafaeva, E.M. Kerimova, Phys. Solid State 53, 472 (2011)

    Article  ADS  Google Scholar 

  20. Y.G. Shim, H. Aoh, J. Sakamoto, K. Wakita, N. Mamedov, Thin Solid Films 519, 2852 (2011)

    Article  ADS  Google Scholar 

  21. A.M. Abdullaev, E.M. Kerimova, A.K. Zamanova, Inorg. Mater. 30, 824 (1994)

    Google Scholar 

  22. W. Hankel, H.D. Hochheimer, C. Carlone, A. Werner, S. Ves, H.G. Schnering, Phys. Rev. B 26, 3211 (1982)

    Article  ADS  Google Scholar 

  23. N.M. Gasanly, A.F. Goncharov, B.M. Dzhavadov, N.N. Melnik, V.I. Tagirov, E.A. Vinogradov, Phys. Status Solidi (b) 97, 367 (1980)

    Article  ADS  Google Scholar 

  24. A.E. Bakhyshov, M.F. Agaeva, A.M. Darvish, Phys. Status Solidi (b) 91, K31 (1979)

    Article  ADS  Google Scholar 

  25. M.K. Rabinal, S.S.K. Titus, S. Asokan, E.S.R. Gopal, M.O. Godzaev, N.T. Mamedov, Phys. Status Solidi (b) 178, 403 (1993)

    Article  ADS  Google Scholar 

  26. A.A. Ebnalwaled, J. Cryst. Growth 311, 4385 (2009)

    Article  ADS  Google Scholar 

  27. A.A. Ebnalwaled, Mater. Sci. Eng. B 174, 285 (2010)

    Article  Google Scholar 

  28. A.A. Ebnalwaled, Int. J. Basic Appl. Sci. 11(6), 194 (2011)

    Google Scholar 

  29. D. Mueller, G. Eulenberger, H. Hahn, Z. Anorg. Allg. Chem. 398, 207 (1973)

    Article  Google Scholar 

  30. S.Q. Xiao, A.H. Gleiter, Acta Metall. Mater. 42, 2535 (1994)

    Article  Google Scholar 

  31. R.A. Varin, J. Bystrzycki, A. Calka, Intermetallics 7, 917 (1999)

    Article  Google Scholar 

  32. J. Banys, F.R. Wondre, G. Guseinov, Mater. Lett. 9, 269 (1990)

    Article  Google Scholar 

  33. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, 1972)

    Google Scholar 

  34. A. Taylor, X-ray Metallography (Wiley, New York, 1961)

    Google Scholar 

  35. M. Parlak, C. Ercelebi, I. Gunal, H. Ozkan, N.M. Gasanly, Cryst. Res. Technol. 31, 673 (1996)

    Article  Google Scholar 

  36. V. Riede, H. Neumann, H. Sobotta, Solid State Commun. 38, 71 (1981)

    Article  ADS  Google Scholar 

  37. C.G.B. Garret, Organic semiconductors, in Semiconductors, ed. by N.H. Hannay (Reinhold, New York, 1959)

    Google Scholar 

  38. S. Mrozowski, A. Chaberski, Phys. Rev. 94, 1427 (1954)

    Google Scholar 

  39. V.A. Aliev, M.A. Aldzhanov, Inorg. Mater. 34, 207 (1998)

    Google Scholar 

  40. K.R. Allakhverdiev, F.M. Mikhailov, T.S. Mamedov, Sov. Phys., Solid State 34, 1938 (1992)

    Google Scholar 

  41. Ph. Schmid, J.P. Voitchvsky, Phys. Status Solidi (b) 65, 249 (1974)

    Article  ADS  Google Scholar 

  42. G.D. Guseinov, G.B. Abdullayev, S.M. Bidzinova, F.M. Seidov, M.Z. Ismailov, A.M. Pashayev, Phys. Lett. 33A, 421 (1970)

    ADS  Google Scholar 

  43. A.F. Qasrawi, N.M. Gasanly, Cryst. Res. Technol. 37, 587 (2002)

    Article  Google Scholar 

  44. C. De Blasi, S. Galassini, G. Micocci, S. Mangell, A. Rizzo, A. Tepore, Nuovo Cimento 2D, 1775 (1983)

    Article  ADS  Google Scholar 

  45. G.A. Gamal, M. Abou Zied, A.A. Ebnalwaled, J. Alloys Compd. 431, 32 (2007)

    Article  Google Scholar 

  46. J.Y. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  ADS  Google Scholar 

  47. N.F. Mott, E.A. Davis, Electronic Process in Non Crystalline Materials (Clarendon, Oxford, 1979)

    Google Scholar 

  48. D.K. Paul, S.S. Mitra, Phys. Rev. Lett. 31, 1000 (1973)

    Article  ADS  Google Scholar 

  49. Z. Celik-Butler, P.C. Shan, D.P. Butler, A. Jahanzeb, C.M. Travers, W. Kula, R. Sobolewski, Solid-State Electron. 41, 895 (1997)

    Article  ADS  Google Scholar 

  50. A.M. Panich, J. Phys. Condens. Matter 20, 293202 (2008)

    Article  Google Scholar 

  51. L. Essaleh, S.M. Wasim, J. Galibert, Mater. Lett. 60, 1947 (2006)

    Article  Google Scholar 

  52. J.H. Schön, E. Arushanov, N. Fabre, E. Bucher, Sol. Energy Mater. Sol. Cells 61, 417 (2000)

    Article  Google Scholar 

  53. M. Grunewald, H. Muller, P. Thomas, D. Wurtz, J. Phys. 42, 99 (1981)

    Google Scholar 

  54. A.F. Qasrawi, N.M. Gasanly, Mater. Res. Bull. 44, 2009 (2009)

    Article  Google Scholar 

  55. R. Murugaraj, G. Govindaraj, D. George, Mater. Lett. 57, 1656 (2003)

    Article  Google Scholar 

  56. A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981)

    Article  ADS  Google Scholar 

  57. G.E. Pike, Phys. Rev. B 6, 1572 (1972)

    Article  ADS  Google Scholar 

  58. I.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969)

    Article  ADS  Google Scholar 

  59. A.E. Bekheet, Physica B 403, 4342 (2008)

    Article  ADS  Google Scholar 

  60. N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ebnalwaled.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebnalwaled, A.A., Al-Orainy, R.H. Anisotropic properties and conduction mechanism of TlInSe2 chain semiconductor. Appl. Phys. A 112, 955–961 (2013). https://doi.org/10.1007/s00339-012-7455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7455-8

Keywords

Navigation