The use of micro-XRD for the study of glaze color decorations

Abstract

The compounds responsible for the colors and decorations in glass and glazed ceramics include: coloring agents (transition-metal ions), pigments (micro- and nanoprecipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron radiation micro-X-ray diffraction (SR-micro-XRD) has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth-dependent composition and crystal structure. Their nature and distribution across the glass/glaze decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro-XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and Renaissance tin-glazed ceramics from the 10th to the 17th century AD.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    T. Pradell, J. Molera, N. Salvadó, A. Labrador, Appl. Phys. A 99, 407 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    J.G. Iñañez, M. Madrid-Fernández, J. Molera, R.J. Speakman, T. Pradell, J. Archaeol. Sci. 39 (2012). doi:10.1016/j.jas.2012.09.015

  3. 3.

    J. Molera, J. Coll, A. Labrador, T. Pradell. Appl. Clay Sci. (submitted)

  4. 4.

    P. Colomban, Appl. Phys. A 79, 167 (2004)

    ADS  Article  Google Scholar 

  5. 5.

    M.S. Tite, J. Archaeol. Sci. 36, 2065 (2009)

    Article  Google Scholar 

  6. 6.

    S. Coentro, J.M. Mimoso, A.M. Lima, A.S. Silva, A.N. Pais, V.S.F. Muralha, J. Eur. Ceram. Soc. 32, 37 (2012)

    Article  Google Scholar 

  7. 7.

    F. Rosi, V. Manuali, C. Miliani, B.G. Brunetti, A. Sgamellotti, T. Grygarc, D. Hradil, J. Raman Spectrosc. 40, 107 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    F. Rosi, V. Manuali, T. Grygar, P. Bezdicka, B.G. Brunetti, A. Sgamellotti, L. Burgio, C. Seccaronif, C. Miliani, J. Raman Spectrosc. 42, 407 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    C. Moretti, S. Hreglich, Glass Technol. 25(6), 277 (1984)

    Google Scholar 

  10. 10.

    F.P. Glasser, Am. Mineral. 52, 1085 (1962)

    Google Scholar 

  11. 11.

    B. Sorensen, S. Gaal, E. Ringdalen, M. Tangstad, R. Kononov, O. Ostrovskic, Int. J. Miner. Process. 94, 101 (2010)

    Article  Google Scholar 

  12. 12.

    J. Molera, T. Pradell, N. Salvadó, M. Vendrell-Saz, in From Mine to Microscope: Advances in the Study of Ancient Technology, ed. by A. Shortland, I.C. Freestone, T. Rehren (Oxbow Books, Oxford, 2009), Chap. 1

    Google Scholar 

  13. 13.

    FactSage, Phase diagram MnO–SiO2–O2 p(O2)=0.21 atm. Phase diagram MnO–SiO2–O2 p(O2)=0.01 atm. FToxid–FACT oxide database (2010)

  14. 14.

    B. Gratuze, I. Soulier, M. Blet, L. Vallauri, Rev. Archéom. 20, 77 (1996)

    Google Scholar 

  15. 15.

    C. Viti, I. Borgia, B. Brunetti, A. Sgamellotti, M. Mellini, J. Cult. Herit. 4, 199 (2003)

    Article  Google Scholar 

  16. 16.

    A. Bouquillon, M. Bormand, A. Zucchiatti, Della Robbia (SAGEP Editori, Genova, 2011)

    Google Scholar 

  17. 17.

    J. Perez-Arantegui, M. Resano, E. Garcıa-Ruiz, F. Vanhaecke, C. Roldan, J. Ferrero, J. Coll, Talanta 74, 1271 (2008)

    Article  Google Scholar 

  18. 18.

    J. Pérez-Arantegui, B. Montull, M. Resano, J.M. Ortega, J. Eur. Ceram. Soc. 29, 2499 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The study is funded by CICYT grant MAT2010-20129-C02-01 and Generalitat de Catalunya grants 2009SGR01225 and 2009SGR01251. The authors would also like to express their acknowledgement to Maria Antonia Casanova from Museu de Ceràmica de Barcelona, Guillem Rosselló Bordoy from Museu de Mallorca, Joan Casas, archaeologist from Sant Bartomeu de Grau, Alessandra Cereda from the Ashmolean Museum and Michael S. Tite for providing the ceramics analyzed.

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Pradell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pradell, T., Molina, G., Molera, J. et al. The use of micro-XRD for the study of glaze color decorations. Appl. Phys. A 111, 121–127 (2013). https://doi.org/10.1007/s00339-012-7445-x

Download citation

Keywords

  • Polished Cross Section
  • Cuprite
  • Antimony Oxide
  • Hausmannite
  • Glazed Ceramic