Skip to main content

Advertisement

Log in

Modified infiltration of solvated ions and ionic liquid in a nanoporous carbon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Infiltration of ions in a nanoporous carbon is responsive to the external electric field. If the liquid phase is an aqueous solution of electrolyte, the effective solid-liquid interfacial tension decreases as the voltage rises, similar to the electrowetting phenomenon at a large graphite surface. If the liquid phase is an ionic liquid, however, the effective interfacial tension increases with the voltage. The accessible nanopore volume is not dependent on the electric field. The unique phenomena should be related to the confinement effects of the nanopore inner surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. H. Daiguji, Ion transport in nanofluidic channels. Chem. Soc. Rev. 39, 901–911 (2010)

    Article  Google Scholar 

  2. P. Abgrall, N.T. Nguyen, Nanofluidics (Artech House, Norwood, 2009)

    Google Scholar 

  3. B. Xu, L. Liu, Q. Zhou, Y. Qiao, J. Xu, Y. Li, M. Tak, T. Park, X. Chen, Energy dissipation of nanoporous MFI zeolite under compressive loading. J. Comput. Theor. Nanosci. 8, 881–886 (2011)

    Article  Google Scholar 

  4. G.X. Cao, Y. Qiao, Q.L. Zhou, X. Chen, Water infiltration behaviors in carbon nanotubes under quasistatic and dynamic loading conditions. Mol. Simul. 34, 1267–1274 (2008)

    Article  Google Scholar 

  5. A. Holtzel, U. Tallarek, Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics. J. Sep. Sci. 30, 1398–1419 (2007)

    Article  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987)

    MATH  Google Scholar 

  7. X. Chen, G. Cao, A. Han, V.K. Punyamurtula, L. Liu, P.J. Culligan, T. Kim, Y. Qiao, Nanoscale fluid transport: size and rate effects. Nano Lett. 8, 2988–2992 (2008)

    Article  ADS  Google Scholar 

  8. L. Liu, X. Chen, W. Lu, A. Han, Y. Qiao, Infiltration of electrolytes in molecular-sized nanopores. Phys. Rev. Lett. 102, 184501 (2009)

    Article  ADS  Google Scholar 

  9. B. Xu, Y. Qiao, M. Tak, T. Park, Q. Zhou, X. Chen, A conceptual thermal actuation system driven by interface tension of nanofluids. Energy Environ. Sci. 4, 3632–3639 (2011)

    Article  Google Scholar 

  10. B. Xu, Y. Qiao, Y. Li, Q. Zhou, X. Chen, An electroactuation system based on nanofluids. Appl. Phys. Lett. 98, 221909 (2011)

    Article  ADS  Google Scholar 

  11. R.B. Schoch, J.Y. Han, P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)

    Article  ADS  Google Scholar 

  12. A.A. Milischuk, B.M. Ladanyi, Structure and dynamics of water confined in silica nanopores. J. Chem. Phys. 135, 174709 (2011)

    Article  ADS  Google Scholar 

  13. J. Zhao, P.J. Culligan, Y. Qiao, Q. Zhou, Y. Li, M. Tak, T. Park, X. Chen, Electrolyte solution transport in electropolar nanotubes. J. Phys. Condens. Matter 22, 315301 (2010)

    Article  ADS  Google Scholar 

  14. H. Ohno, Electrochemical Aspects of Ionic Liquids (Wiley, New York, 2011)

    Book  Google Scholar 

  15. J. Mun, H. Sim, Handbook of Ionic Liquids: Properties, Applications, and Hazards (Nova Science Publishers, New York, 2011)

    Google Scholar 

  16. A. Han, Y. Qiao, Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. 36, 882–883 (2007)

    Article  Google Scholar 

  17. Y. Qiao, L. Liu, X. Chen, Pressurized liquid in nanopores: a modified Laplace–Young equation. Nano Lett. 9, 984–988 (2009)

    Article  ADS  Google Scholar 

  18. A. Han, X. Kong, Y. Qiao, Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 (2006)

    Article  ADS  Google Scholar 

  19. Y. Qiao, G. Cao, X. Chen, Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355–2359 (2007)

    Article  Google Scholar 

  20. A.J. Bard, L.R. Faulkner, Electrochemical Method: Fundamentals and Applications (Wiley, New York, 2000)

    Google Scholar 

  21. J.O. Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry (Kluwer Academic, New York, 1998)

    Google Scholar 

  22. A. Han, Y. Qiao, Pressure induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc. 128, 10348–10349 (2006)

    Article  Google Scholar 

  23. F.B. Surani, X. Kong, Y. Qiao, Two-staged sorption isotherm of a nanoporous energy absorption system. Appl. Phys. Lett. 87, 251906 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation under Grant No. ECCS-1028010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, W., Kim, T., Zhao, C. et al. Modified infiltration of solvated ions and ionic liquid in a nanoporous carbon. Appl. Phys. A 112, 885–889 (2013). https://doi.org/10.1007/s00339-012-7442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7442-0

Keywords

Navigation