Skip to main content
Log in

Electronic properties of carbon nanotubes under torsion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element–tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation, results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach the buckling load under torsion much earlier, their electrical conductivity changes more easily than in small diameter ones. For the same outer diameter, zigzag MWNTs are more sensitive to twisting than armchair MWNTs since the hexagonal cells are oriented in such a way that they oppose less resistance to the buckling deformations due to torsion. Thus small diameter armchair MWNTs should work better if used as conductors, while big diameter zigzag MWNTs are more suitable for building sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Carbon Nanotubes (Springer, Heidelberg, 2001)

    Book  Google Scholar 

  3. J. Bernholc, D. Brenner, M. Buongiorno Nardelli, V. Meunier, C. Roland, Annu. Rev. Mater. Res. 32, 347 (2002)

    Article  Google Scholar 

  4. J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, R.B. Laughlin, L. Liu, C.S. Jayanthi, S.Y. Wu, Phys. Rev. Lett. 87, 106801 (2001)

    Article  ADS  Google Scholar 

  5. V. Meunier, M. Buongiorno Nardelli, C. Roland, J. Bernholc, Phys. Rev. B 64, 195419 (2001)

    Article  ADS  Google Scholar 

  6. A. Rochefort, P. Avouris, F. Lesage, D.R. Salahub, Phys. Rev. B 60, 13824 (1999)

    Article  ADS  Google Scholar 

  7. B. Liu, H. Jiang, H.T. Johnson, Y. Huang, J. Mech. Phys. Solids 52, 1 (2004)

    Article  ADS  Google Scholar 

  8. L. Yang, J. Han, Phys. Rev. Lett. 85, 154 (2000)

    Article  ADS  Google Scholar 

  9. C. Hierold, A. Jungen, C. Stampfer, T. Helbling, Sens. Actuators A, Phys. 136, 51–61 (2007)

    Article  Google Scholar 

  10. A. Sani, S. Darbari, Y. Abdi, E. Arzi, Carbon 50, 3635–3640 (2012)

    Article  Google Scholar 

  11. B. Lassagne, A. Bachtold, C. R. Phys. 11, 355–361 (2010)

    Article  ADS  Google Scholar 

  12. A. Mdarhri, D. Alamarguy, F. Houzé, S. Noël, S. Volz, H. Li, J.B. Bai, Composites, Part B, Eng. 42, 2098–2104 (2011)

    Article  Google Scholar 

  13. M. Passacantando, F. Bussolotti, S. Santucci, J. Non-Cryst. Solids 356, 2038–2041 (2010)

    Article  ADS  Google Scholar 

  14. D. Tekleab, D.L. Carroll, G.G. Samsonidze, B.I. Yakobson, Phys. Rev. B 64, 035419 (2001)

    Article  ADS  Google Scholar 

  15. S. Paulson, M.R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R.M. Taylor, R. Superfine, S. Washburna, Appl. Phys. Lett. 75, 2936 (1999)

    Article  ADS  Google Scholar 

  16. E.D. Minot, Y. Yaish, V. Sazonova, J. Park, M. Brink, P.L. McEuen, Phys. Rev. Lett. 90, 156401 (2003)

    Article  ADS  Google Scholar 

  17. Y. Chen, C. Weng, Carbon 45, 1636–1644 (2007)

    Article  Google Scholar 

  18. A. Maiti, Microelectron. J. 39, 208–221 (2008)

    Article  MathSciNet  Google Scholar 

  19. S. Wang, R. Wang, X. Wu, H. Zhang, R. Liu, Physica E, Low-Dimens. Syst. Nanostruct. 42, 2250–2256 (2010)

    Article  ADS  Google Scholar 

  20. A. Maiti, A. Svizhenko, M.P. Anantram, Phys. Rev. Lett. 88, 126805 (2002)

    Article  ADS  Google Scholar 

  21. J. Lu, J. Wu, W. Duan, F. Liu, B. Zhu, B. Gu, Phys. Rev. Lett. 90, 156601 (2003)

    Article  ADS  Google Scholar 

  22. A.A. Farajian, B.I. Yakobson, H. Mizuseki, Y. Kawazoe, Phys. Rev. B 67, 205423 (2003)

    Article  ADS  Google Scholar 

  23. M. Buongiorno Nardelli, Phys. Rev. B 60, 7828 (1999)

    Article  ADS  Google Scholar 

  24. A. Pantano, D. Cerniglia, Appl. Phys. A, Mater. Sci. Process. 91, 521 (2008)

    Article  ADS  Google Scholar 

  25. A. Pantano, D. Cerniglia, Appl. Phys. A, Mater. Sci. Process. 98, 327 (2010)

    Article  ADS  Google Scholar 

  26. S. Sanvito, Y. Kwon, D. Tománek, C.J. Lambert, Phys. Rev. Lett. 84, 1974 (2000)

    Article  ADS  Google Scholar 

  27. P. Delaney, M. Di Ventra, S.T. Pantelides, Appl. Phys. Lett. 75, 3787 (1999)

    Article  ADS  Google Scholar 

  28. Y. Kwon, D. Tománek, Phys. Rev. B 58, R16001 (1998)

    Article  ADS  Google Scholar 

  29. H.J. Choi, J. Ihm, Y. Yoon, S.G. Louie, Phys. Rev. B 58, R14009 (1999)

    Article  ADS  Google Scholar 

  30. A. Pantano, D.M. Parks, M.C. Boyce, Phys. Rev. Lett. 91, 145504 (2003)

    Article  ADS  Google Scholar 

  31. A. Pantano, M.C. Boyce, D.M. Parks, J. Mech. Phys. Solids 52, 789 (2004)

    Article  MATH  ADS  Google Scholar 

  32. A. Pantano, M.C. Boyce, D.M. Parks, J. Eng. Mater. Technol. 126, 279 (2004)

    Article  Google Scholar 

  33. A. Pantano, D.M. Parks, M.C. Boyce, M. Buongiorno Nardelli, J. Appl. Phys. 92, 6756 (2004)

    Article  ADS  Google Scholar 

  34. C.H. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, J. Phys. Condens. Matter 4, 6047 (1992)

    Article  ADS  Google Scholar 

  35. J.C. Charlier, P. Lambinand, T.W. Ebbesen, Phys. Rev. B 54, R8377 (1997)

    Article  ADS  Google Scholar 

  36. T. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)

    Article  ADS  Google Scholar 

  37. A. Pantano, M. Buongiorno Nardelli, ACS Nano 3, 3266–3272 (2009)

    Article  Google Scholar 

  38. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  39. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  40. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  41. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  42. D.H. Lee, J.D. Joannopoulos, Phys. Rev. B 23, 4988 (1981)

    Article  ADS  Google Scholar 

  43. M.P. Lopez-Sancho, J.M. Lopez-Sancho, J. Rubio, J. Phys. F, Met. Phys. 14, 1205 (1984)

    Article  ADS  Google Scholar 

  44. T. Kuzumaki, Y. Mitsuda, Appl. Phys. Lett. 85, 1250 (2004)

    Article  ADS  Google Scholar 

  45. T.W. Ebbesen, T. Takada, Carbon 33, 973 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Pantano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, A., Campanella, D., Montinaro, N. et al. Electronic properties of carbon nanotubes under torsion. Appl. Phys. A 110, 77–85 (2013). https://doi.org/10.1007/s00339-012-7415-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7415-3

Keywords

Navigation