Skip to main content
Log in

Proposal and analysis of artificial dielectric lens with metallic corrugated structures for terahertz wave band

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical devices for the terahertz wave band are being developed now and require better designs. This paper proposes an artificial dielectric lens with metallic corrugated structures for the terahertz wave band. A periodic analysis model extracted from the full model by assuming periodicity confirms the phase delay, which produces the focusing effect. Full model analysis also confirms the focusing effect. The full model analysis also confirms that the focusing length is longer as the spacing of corrugated baffles is wider. The focusing length is longer the metallic groove width is wider. The focusing length is longer as the groove depth is shallower. The lens shape without grooves does not produce the focusing effect. The results of the full model analysis are qualitatively consistent with those of the periodic model ones. This implies that the design for an exact size lens is possible by using the periodic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.E. Kock, Metallic delay lenses. Bell Syst. Tech. J. 27(1), 58–82 (1948)

    MathSciNet  Google Scholar 

  2. S.S.D. Jones, J. Brown, Metallic delay lenses. Nature 163, 324–325 (1949)

    Article  ADS  Google Scholar 

  3. J. Brown, The design of metallic delay dielectrics. Proc. Inst. Electr. Eng., Part 3, Radio Commun. Eng. 97(45), 45–48 (1950)

    Google Scholar 

  4. S.B. Cohn, Microwave measurements on metallic delay media. Proc. IRE 41(9), 1177–1183 (1953)

    Article  Google Scholar 

  5. J. Brown, W. Jackson, The relative permittivity of tetragonal arrays of perfectly conducting thin discs. Proc. Inst. Electr. Eng., Part 3, Radio Commun. Eng. 102(1), 37–42 (1955)

    Google Scholar 

  6. W.E. Kock, Metal-lens antennas. Proc. IRE 34(11), 828–836 (1946)

    Article  Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402-1–207402-4 (2008)

    Article  ADS  Google Scholar 

  8. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  9. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B 78, 241103-1–241103-4 (2008)

    ADS  Google Scholar 

  10. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104-1–125104-6 (2009)

    Article  ADS  Google Scholar 

  11. H.-T. Chen, J. Zhou, J.F. O’Hara, F. Chen, A.K. Azad, A.J. Taylor, Antireflection coating using metamaterials and identification of its mechanism. Phys. Rev. Lett. 105, 073901-1–073901-4 (2010)

    ADS  Google Scholar 

  12. M. Choi, S.H. Lee, Y. Kim, S.B. Kang, J. Shin, M.H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, B. Min, A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–374 (2011)

    Article  ADS  Google Scholar 

  13. F. Miyamaru, M.W. Takeda, K. Taima, Characterization of terahertz metamaterials fabricated on flexible plastic films: toward fabrication of bulk metamaterials in terahertz region. Appl. Phys. Express 2, 042001-1–042001-3 (2009)

    Article  ADS  Google Scholar 

  14. F. Miyamaru, S. Kubota, K. Taima, K. Takano, M. Hangyo, M.W. Takeda, Three-dimensional bulk metamaterials operating in the terahertz range. Appl. Phys. Lett. 96, 081105-1–081105-3 (2010)

    ADS  Google Scholar 

  15. J. Shin, J.-T. Shen, P.B. Catrysse, S. Fan, Cut-through metal slit array as an anisotropic metamaterial film. IEEE J. Sel. Top. Quantum Electron. 12(6), 1116–1122 (2006)

    Article  Google Scholar 

  16. K. Akiyama, K. Takano, Y. Abe, Y. Tokuda, M. Hangyo, Optical transmission anomalies in a double-layered metallic slit array. Opt. Express 18(17), 17876–17882 (2010)

    Article  ADS  Google Scholar 

  17. K. Sato, K. Sudo, J. Hirokawa, M. Ando, Analysis of slot coupling in a corrugated radial waveguide, in 2005 International Symposium on Antennas and Propagation (ISAP 2005), WB1-3, 3–5 August, vol. 1 (2005), pp. 3–5

    Google Scholar 

  18. K. Sakakibara, J. Hirokawa, M. Ando, N. Goto, Periodic boundary condition for evaluation of external mutual couplings in a slotted waveguide array. IEICE Trans. Commun. E 79-B(8), 1156–1164 (1996)

    Google Scholar 

  19. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (Wiley, New York, 2005). Sect. 4.7.1

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) from the Ministry of Internal Affairs and Communications, a Grant-in-Aid for Scientific Research on Innovative Areas “Electromagnetic Metamaterial” (No. 23109505) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, the Takayanagi Memorial Foundation, the Yazaki Memorial Foundation for Science & Technology, and the Iketani Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehito Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konno, T., Suzuki, T., Young, J.C. et al. Proposal and analysis of artificial dielectric lens with metallic corrugated structures for terahertz wave band. Appl. Phys. A 109, 1103–1108 (2012). https://doi.org/10.1007/s00339-012-7394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7394-4

Keywords

Navigation