Skip to main content
Log in

Theoretical study of armchair single-walled carbon nanotubes in the presence of a strong laser field: high harmonic generation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nonlinear optical response of armchair single-walled carbon nanotubes under high-intensity laser irradiation is investigated theoretically and numerically because the generation of high harmonics requires a strong laser field and come from the nonlinear motion of π electrons in carbon nanotubes. A nonperturbative approach is performed to investigate the effect of group velocity on the high harmonics spectrum by nanotubes. A set of the quantum kinetic equations is derived, which includes coupled equations for the density matrix. By solving the density matrix and the current density equations numerically, we have studied the high-order harmonic generation from metallic carbon nanotubes driven by an electromagnetic external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon Nanotubes (Springer, Berlin, 2001)

    Book  Google Scholar 

  2. H.-S. Philip Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  3. V.A. Margulis, T.A. Sizikova, Physica B 245, 173 (1998)

    Article  ADS  Google Scholar 

  4. V.A. Margulis, J. Phys. Condens. Matter 11, 3065 (1999)

    Article  ADS  Google Scholar 

  5. X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, M. Wan, Appl. Phys. Lett. 74, 164 (1999)

    Article  ADS  Google Scholar 

  6. C. Stanciu, E. Ehlich, V. Petrov, O. Steinkellner, J. Hermann, I.V. Hertel, G.Ya. Slepyan, A.A. Khrutchinski, S.A. Maksimenko, F. Rotermund, E.E.B. Campbell, F. Rohmund, Appl. Phys. Lett. 81, 4064 (2002)

    Article  ADS  Google Scholar 

  7. L. Jensen, P. Astrand, K.V. Mikkelsen, Nano Lett. 3, 661 (2003)

    Article  ADS  Google Scholar 

  8. S.O. Konorov, D.A. Akimov, A.A. Ivanov, M.V. Alfimov, S. Botti, R. Ciardi, L. De Dominicis, L.S. Asilyan, A.A. Podshivalov, D.A. Sidorov-Biryukov, R. Fantoni, A.M. Zheltikov, J. Raman Spectrosc. 34, 1018 (2003)

    Article  ADS  Google Scholar 

  9. D.A. Akimov, M.V. Alfimov, S.O. Konorov, A.A. Ivanov, S. Botti, A.A. Podshivalov, R. Ciardi, L. De Dominicis, L.S. Asilyan, R. Fantoni, A.M. Zheltikov, Sov. Phys. JETP 98, 220 (2004)

    Article  ADS  Google Scholar 

  10. L. De Dominicis, S. Botti, L.S. Asilyan, R. Ciardi, R. Fantoni, M.L. Terranova, A. Fiori, S. Orlanducci, R. Appolloni, Appl. Phys. Lett. 85, 1418 (2004)

    Article  ADS  Google Scholar 

  11. A.M. Nemilentsau, G.Ya. Slepyan, A.A. Khrutchinskii, S.A. Maksimenko, Carbon 44, 2246 (2006)

    Article  Google Scholar 

  12. C. Zhang, K. Guo, S. Liang, Chem. Phys. Lett. 433, 101 (2006)

    Article  ADS  Google Scholar 

  13. V.A. Margulis, O.V. Boyarkina, E.A. Gaiduk, Opt. Commun. 249, 339 (2005)

    Article  ADS  Google Scholar 

  14. G.Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Hermann, E.E.B. Campbell, I.V. Hertel, Phys. Rev. A 60, R777 (1999)

    Article  ADS  Google Scholar 

  15. O.E. Alon, V. Averbukh, N. Moiseyev, Phys. Rev. Lett. 85, 5218 (2000)

    Article  ADS  Google Scholar 

  16. G.Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, A.V. Gusakov, J. Herrman, Phys. Rev. A 63, 053808 (2001)

    Article  ADS  Google Scholar 

  17. G.Ya. Slepyan, A.A. Khrutchinskii, A.M. Nemilentsau, S.A. Maksimenko, J. Herrmann, Int. J. Nanosci. 3, 343 (2004)

    Article  Google Scholar 

  18. H. Hsu, L.E. Reichl, Phys. Rev. B 74, 115406 (2006)

    Article  ADS  Google Scholar 

  19. J. Sun, Z. Guo, W. Liang, Phys. Rev. B 75, 195438 (2007)

    Article  ADS  Google Scholar 

  20. H. Khosravi, A. Bahari, N. Daneshfar, Phys. Scr. 77, 055702 (2008)

    Article  ADS  Google Scholar 

  21. A. Bahari, N. Daneshfar, H. Khosravi, Carbon 47, 457 (2009)

    Article  Google Scholar 

  22. H. Khosravi, N. Daneshfar, A. Bahari, Opt. Lett. 34, 7235 (2009)

    Article  Google Scholar 

  23. N. Daneshfar, A. Bahari, J. Opt. 12, 095202 (2010)

    Article  ADS  Google Scholar 

  24. R.A. Ganeev, P.A. Naik, H. Singhal, J.A. Chakera, M. Kumar, M.P. Joshi, A.K. Srivastava, P.D. Gupta, Phys. Rev. A 83, 013820 (2011)

    Article  ADS  Google Scholar 

  25. Y. Pu, R. Grange, C. Hsieh, D. Psaltis, Phys. Rev. Lett. 104, 207402 (2010)

    Article  ADS  Google Scholar 

  26. N.C. Panoiu, J.F. McMillan, C.W. Wong, Appl. Phys. A 103, 835 (2011)

    Article  ADS  Google Scholar 

  27. J. Hao, G.W. Hanson, IEEE Trans. Nanotechnol. 5, 766 (2006)

    Article  ADS  Google Scholar 

  28. Y.A. Ilinskii, L.V. Keldysh, Electromagnetic Response of Material Media (Plenum, New York, 1994)

    Google Scholar 

  29. M.R. Geller, G. Vignale, Phys. Rev. B 51, 2616 (1995)

    Article  ADS  Google Scholar 

  30. C.A. Mead, Collective Electrodynamics (MIT Press, Cambridge, 2000)

    Google Scholar 

  31. G.Ya. Slepyan, S.A. Maksimenko, A. Lakhtakia, O.M. Yevtushenko, A.V. Gusakov, Phys. Rev. B 57, 9485 (1998)

    Article  ADS  Google Scholar 

  32. P.M. Ajayan, O.Z. Zhou, Carbon Nanotubes, Topics in Applied Physics, vol. 80, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, 2001)

    Google Scholar 

  33. D. Golde, T. Meier, S.W. Koch, Phys. Status Solidi C 6, 420 (2009)

    Article  ADS  Google Scholar 

  34. R. Ondarza-Rovira, T.J. Boyd, Phys. Rev. E 64, 046604 (2001)

    Article  ADS  Google Scholar 

  35. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Berlin, 2004)

    Google Scholar 

  36. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  ADS  Google Scholar 

  37. S. Reich, C. Thomsen, P. Ordejon, Phys. Rev. B 65, 155411 (2002)

    Article  ADS  Google Scholar 

  38. J.T. Titantah, K. Jorissen, D. Lamoen, Phys. Rev. B 69, 125406 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author N. Daneshfar would like to thank Dr. Mahdi Tabrizi for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Daneshfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daneshfar, N., Bahari, A. Theoretical study of armchair single-walled carbon nanotubes in the presence of a strong laser field: high harmonic generation. Appl. Phys. A 110, 105–110 (2013). https://doi.org/10.1007/s00339-012-7375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7375-7

Keywords

Navigation