Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Negative refraction in semiconductor metamaterials based on quantum cascade laser design for the mid-IR and THz spectral range

  • 425 Accesses

  • 5 Citations


We have considered the realization of metamaterials based on semiconductor quantum nanostructures, in particular, with the structural arrangement as in quantum cascade laser (QCL) designed to achieve optical gain in the mid-infrared and terahertz part of the spectrum. The entire structure is placed in a strong external magnetic field, which facilitates the attainment of sufficient population inversion, necessary to manipulate the permittivity, and enable a left-handed regime.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

  2. 2.

    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)

  3. 3.

    C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001)

  4. 4.

    B.S. Williams, Terahertz quantum-cascade lasers. Nat. Photonics 1, 517–525 (2007)

  5. 5.

    O. Drachenko, S. Winnerl, H. Schneider, M. Helm, J. Wosnitza, J. Leotin, Compact magnetospectrometer for pulsed magnets based on infrared quantum cascade lasers. Rev. Sci. Instrum. 82, 033108 (2011)

  6. 6.

    A. Hugi, R. Maulini, J. Faist, Topical review—external cavity quantum cascade laser. Semicond. Sci. Technol. 25, 083001 (2010)

  7. 7.

    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Quantum cascade lasers in chemical physics. Chem. Phys. Lett. 487, 1–18 (2010)

  8. 8.

    P. Ginzburg, M. Orenstein, Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification. J. Appl. Phys. 104, 063513 (2008)

  9. 9.

    P. Ginzburg, M. Orenstein, Nonmetallic left-handed material based on negative-positive anisotropy in low-dimensional quantum structures. J. Appl. Phys. 103, 083105 (2008)

  10. 10.

    V.M. Shalaev, Optical negative-index metamaterials. Nat. Photonics 1, 41–48 (2007)

  11. 11.

    I. Savić, N. Vukmirović, Z. Ikonić, D. Indjin, R.W. Kelsall, P. Harrison, V. Milanović, Density matrix theory of transport and gain in quantum cascade lasers in a magnetic field. Phys. Rev. B 76, 165310 (2007)

  12. 12.

    S. Ramović, J. Radovanović, V. Milanović, Tunable semiconductor metamaterials based on quantum cascade laser layout assisted by strong magnetic field. J. Appl. Phys. 110, 123704 (2011)

  13. 13.

    S. Kumar, C.W.I. Chan, Q. Hu, J. Reno, Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation. Appl. Phys. Lett. 95, 14110 (2009)

  14. 14.

    A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B.S. Williams, Q. Hu, J.L. Reno, Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nat. Photonics 3, 41–45 (2007)

  15. 15.

    P. Basu, Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Clarendon Press, Oxford, 1997)

  16. 16.

    V.A. Podolskiy, E.E. Narimanov, Strongly anisotropic waveguide as a nonmagnetic left-handed system. Phys. Rev. B, Condens. Matter Mater. Phys. 71, 201101R (2005)

  17. 17.

    J. Radovanović, V. Milanović, Z. Ikonić, D. Indjin, P. Harrison, Electron-phonon relaxation rates and optical gain in a quantum cascade laser in a magnetic field. J. Appl. Phys. 97, 103109 (2005)

  18. 18.

    A. Daničić, J. Radovanović, V. Milanović, D. Indjin, Z. Ikonić, Optimization and magnetic-field tunability of quantum cascade laser for applications in trace gas detection and monitoring. J. Phys. D, Appl. Phys. 43, 045101 (2010)

  19. 19.

    J. Radovanović, A. Mirčetić, V. Milanović, Z. Ikonić, D. Indjin, P. Harrison, R.W. Kelsall, Influence of the active region design on output characteristics of GaAs/AlGaAs quantum cascade lasers in a strong magnetic field. Semicond. Sci. Technol. 21, 215–220 (2006)

  20. 20.

    U. Ekenberg, Nonparabolicity effects in a quantum well: sublevel shift, parallel mass, and Landau levels. Phys. Rev. B 40, 7714–7726 (1989)

  21. 21.

    J. Radovanović, V. Milanović, Quantum cascade laser: applications in chemical detection and environmental monitoring. Nucl. Technol. Radiat. 24, 75–81 (2009)

  22. 22.

    A. Leuliet, A. Vasanelli, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, C. Sirtori, Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers. Phys. Rev. B 73, 085311 (2006)

  23. 23.

    T. Unuma, M. Yoshita, T. Noda, H. Sakaki, H. Akiyama, Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities. J. Appl. Phys. 93, 1586 (2003)

Download references


This work was supported by the Ministry of Science (Republic of Serbia), ev. no. III 45010 and NATO SfP Grant, ref. no. ISEG.EAP.SFPP 984068.

Author information

Correspondence to J. Radovanović.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Radovanović, J., Ramović, S., Daničić, A. et al. Negative refraction in semiconductor metamaterials based on quantum cascade laser design for the mid-IR and THz spectral range. Appl. Phys. A 109, 763–768 (2012). https://doi.org/10.1007/s00339-012-7343-2

Download citation


  • Landau Level
  • Population Inversion
  • Quantum Cascade Laser
  • Optical Gain
  • Magnetic Field Range