Applied Physics A

, Volume 111, Issue 1, pp 99–108 | Cite as

A XANES study of chromophores in archaeological glass

  • Rossella Arletti
  • Simona Quartieri
  • Ian C. Freestone


We applied X-ray absorption near edge spectroscopy (XANES) to obtain information on the origin of glass colour of several archaeological samples and on the oxidation conditions employed during their production. We studied a series of selected glass fragments—mainly from excavated primary and secondary production centres and dated to the first millennium AD—containing iron and manganese in a wide compositional range. In most of the studied samples iron is rather oxidised, while Mn K-edge XANES data show that, in all the studied glasses, Mn is mainly present in its reduced form (predominantly 2+), with the possible subordinate presence of Mn3+. The most oxidised samples are the HIMT (high iron manganese titanium) glasses, while the less oxidised ones belong to the primary natron glass series from the early Islamic tank furnaces at Bet Eliezer (Israel), and to the series coming from a Roman glass workshop excavated in Basinghall Street, London. In these glasses, iron is approximately equally distributed over the 2+ and 3+ oxidation states. The XANES analyses of two glasses which had been deliberately decolourized using Sb- and Mn-based decolourizers demonstrate that Sb is more effective than Mn as oxidant.


Pyrolusite Natron Iron Oxidation State Ancient Glass Roman Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the BM08 GILDA beamline staff (ESRF, Grenoble) for assistance during the XANES experiments.


  1. 1.
    D. Dungworth, Hist. Environ. 2, 21 (2011) CrossRefGoogle Scholar
  2. 2.
    M. Cotte, J. Susini, J. Dik, K. Janssens, Acc. Chem. Res. 43, 705 (2010) CrossRefGoogle Scholar
  3. 3.
    S. Quartieri, Synchrotron radiation in archaeological and cultural heritage science, in XI School on Synchrotron Radiation: Fundamentals, Methods and Applications, Duino, Trieste, Italy, 5–16 September 2011. Google Scholar
  4. 4.
    R. Arletti, M.C. Dalconi, S. Quartieri, M. Triscari, G. Vezzalini, Appl. Phys. A 83, 239 (2006) ADSCrossRefGoogle Scholar
  5. 5.
    R. Arletti, G. Vezzalini, S. Quartieri, D. Ferrari, M. Merlini, M. Cotte, Appl. Phys. A 92, 127 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    R. Arletti, C. Giacobbe, S. Quartieri, G. Sabatino, G. Tigano, M. Triscari, G. Vezzalini, Archaeometry 52, 99 (2010) CrossRefGoogle Scholar
  7. 7.
    R. Arletti, G. Vezzalini, S. Benati, L. Mazzeo Saracino, A. Gamberini, Archaeometry 52, 252 (2010) CrossRefGoogle Scholar
  8. 8.
    F. Farges, Y. Lefrere, S. Rossano, A. Berthereau, G. Calas, G.E. Brown, J. Non-Cryst. Solids 344, 176 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    F. Farges, E. Chalmin, C. Vignaud, I. Pallot-Frossard, J. Susini, J. Bargar, G.E. Brown, M. Menu, Phys. Scr. 115, 885 (2005) CrossRefGoogle Scholar
  10. 10.
    F. Farges, S. Djanarthany, S. de Wispelaere, M. Munoz, B. Magassouba, A. Haddi, M. Wilke, C. Schmidt, M. Borchert, P. Trocellier, W. Crichton, A. Simionovici, P.E. Petit, M. Mezouar, M.P. Etcheverry, I. Pallot-Frossard, J.R. Bargar, G.E. Brown, D. Grolimund, A. Scheidegger, Phys. Chem. Glasses 46, 350 (2005) Google Scholar
  11. 11.
    L. Galoisy, G. Calas, M.A. Arrio, Chem. Geol. 174, 307 (2001) CrossRefGoogle Scholar
  12. 12.
    G. Giuli, G. Pratesi, C. Cipriani, E. Paris, Geochim. Cosmochim. Acta 66, 4347 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    G. Giuli, S.G. Eeckhout, E. Paris, C. Koeberl, G. Pratesi, Meteorit. Planet. Sci. 40, 1575 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    G. Giuli, S.G. Eeckhout, C. Koeberl, G. Pratesi, E. Paris, Meteorit. Planet. Sci. 43, 981 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    N. Métrich, J. Susini, E. Foy, F. Farges, D. Massare, L. Sylla, S. Lequien, M. Bonnin-Mosbah, Chem. Geol. 231, 350 (2006) CrossRefGoogle Scholar
  16. 16.
    S. Quartieri, M. Triscari, G. Sabatino, F. Boscherini, A. Sani, Eur. J. Mineral. 14, 749 (2002) CrossRefGoogle Scholar
  17. 17.
    S. Quartieri, M.P. Riccardi, B. Messiga, F. Boscherini, J. Non-Cryst. Solids 351, 3013 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    S. Rossano, A. Ramos, J.-M. Delaye, S. Creux, A. Filipponi, C.H. Brouder, G. Calas, Europhys. Lett. 49, 597 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    M. Wilke, G.M. Partzsch, R. Bernhardt, D. Lattard, Chem. Geol. 213, 71 (2004) CrossRefGoogle Scholar
  20. 20.
    M. Wilke, G. Schmidt, F. Farges, V. Malavergne, L. Gautron, A. Simionovici, M. Hahn, P.E. Petit, Chem. Geol. 229, 144 (2006) CrossRefGoogle Scholar
  21. 21.
    M. Wilke, F. Farges, G.M. Partzsch, C. Schmidt, H. Beherens, Am. Mineral. 92, 44 (2007) CrossRefGoogle Scholar
  22. 22.
    A. Santagostino Barbone, E. Gliozzo, F. D’acapito, I. Turbanti Memmi, M. Turchiano, G. Volpe, Archaeometry 50, 389 (2010) Google Scholar
  23. 23.
    L. De Ferri, R. Arletti, G. Ponterini, S. Quartieri, Eur. J. Mineral. 23, 969 (2011) CrossRefGoogle Scholar
  24. 24.
    E. Chalmin, F. Farges, G.E. Brown, Contrib. Mineral. Petrol. 157, 111 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    O. Schalm, K. Proost, K. De Vis, S. Cagno, K. Janssens, F. Mees, P. Jacobs, J. Caen, Archaeometry (2010). doi: 10.1111/j.1475-4754.2010.00534.x Google Scholar
  26. 26.
    S. Cagno, G. Nuyts, S. Bugani, K. De Vis, O. Schalm, J. Caen, L. Helfen, M. Cotte, P. Reischig, K. Janssens, J. Anal. At. Spectrom. 26, 2442 (2011) CrossRefGoogle Scholar
  27. 27.
    I.C. Freestone, Y. Gorin-Rosen, M.J. Hughes, in Ateliers Primaires et Secondaires de Verriers du Second Millinaire av. J.-C. au Moyen-Age, ed. by M.-D. Nenna (Travaux de la Maison de l’Orient Méditerranéen, Charenton-le-Pont Cedex, 2000), p. 65 Google Scholar
  28. 28.
    I.C. Freestone, S. Wolf, M. Thirlwall, in Ann. 16e Congres de l’Association Internationale pour l’Histoire du Verre (2005), p. 153 Google Scholar
  29. 29.
    I.C. Freestone, in Excavations at Carthage, vol. II, ed. by H. Hurs (Oxford University Press for British Academy, London, 1994), p. 290 Google Scholar
  30. 30.
    I.C. Freestone, R. Greenwood, Y. Gorin-Rosen, in Hyalos: Vitrum = Glass. History, Technology and Conservation of Glass and Vitreous Materials in the Hellenic World. 1st Int. Conf., ed. by G. Kordas, Rhodes, Greece (2002), p. 167 Google Scholar
  31. 31.
    S. Pascarelli, F. Boscherini, F. D’Acapito, J. Hardy, C. Meneghini, S. Mobilio, J. Synchrotron Radiat. 3, 147 (1996) CrossRefGoogle Scholar
  32. 32.
    PeakFit4, Systat Software, Inc.
  33. 33.
    A.J. Berry, H.St.C. O’Neill, K.D. Jayasuriya, S.J. Campbell, G.J. Foran, Am. Mineral. 88, 967 (2003) Google Scholar
  34. 34.
    M. Wilke, F. Farges, P.E. Petit, G.E. Brown, F. Martin, Am. Mineral. 86, 714 (2001) Google Scholar
  35. 35.
    G.A. Waychunas, M.J. Apted, G.E. Brown, Phys. Chem. Miner. 10, 1 (1983) ADSCrossRefGoogle Scholar
  36. 36.
    T.E. Westre, P. Kennepohl, J. de Witt, B. Hedman, K.O. Hodgson, E.I. Solomon, J. Am. Chem. Soc. 119, 6297 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rossella Arletti
    • 1
  • Simona Quartieri
    • 2
  • Ian C. Freestone
    • 3
  1. 1.Dipartimento di Scienze della TerraUniversità di TorinoTorinoItaly
  2. 2.Dipartimento di Fisica e Scienze della TerraUniversità di MessinaMessina S’AgataItaly
  3. 3.Institute of ArchaeologyLondonUK

Personalised recommendations