Skip to main content
Log in

Use of distributed Bragg reflectors to enhance Fabry–Pérot lasing in vertically aligned ZnO nanowires

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An optically pumped ZnO nanowire laser with a 10-period SiO2/SiN x distributed Bragg reflector (DBR) was demonstrated. Stimulated emissions with equally distributed Fabry–Pérot lasing modes were observed at pumping powers larger than 121 kW/cm2. This result, when compared to nanowires of the same length and without a DBR structure, shows that a lower threshold of pumping power, higher quality factor, and larger cavity finesse can be achieved due to the high reflectivity of the DBR in the designed wavelength range. A coexistence of stimulated and spontaneous emissions was also observed above threshold and was attributed to partially confined waveguide modes in nanowires with diameters smaller than 100 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. T. Nakamura, B.P. Tiwari, S. Adachi, Appl. Phys. Lett. 99, 231105 (2011)

    Article  ADS  Google Scholar 

  2. H. Cao, J.Y. Xu, D.Z. Zhang, S.-H. Chang, S.T. Ho, E.W. Seelig, X. Liu, R.P.H. Chang, Phys. Rev. Lett. 84, 5584 (2000)

    Article  ADS  Google Scholar 

  3. R.K. Thareja, A. Mitra, Appl. Phys. B 71, 181 (2000)

    Article  ADS  Google Scholar 

  4. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  5. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.J. Choi, Adv. Funct. Mater. 12, 323 (2002)

    Article  Google Scholar 

  6. R. Yan, D. Gargas, P. Yang, Nat. Photonics 3, 569 (2009)

    Article  ADS  Google Scholar 

  7. S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Nat. Nanotechnol. 6, 506 (2011)

    Article  ADS  Google Scholar 

  8. Z.K. Tang, G.K.L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998)

    Article  ADS  Google Scholar 

  9. S. Cho, J. Ma, Y. Kim, Y. Sun, K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999)

    Article  ADS  Google Scholar 

  10. S. Chu, M. Olmedo, Z. Yang, J. Kong, J. Liu, Appl. Phys. Lett. 93, 181106 (2008)

    Article  ADS  Google Scholar 

  11. C. Yuen, S.F. Yu, S.P. Leong, H.Y. Yang, S.P. Law, N.S. Chen, H.H. Hng, Appl. Phys. Lett. 86, 031112 (2005)

    Article  ADS  Google Scholar 

  12. H. Cao, Y.G. Zhao, S.T. Ho, E.W. Seelig, Q.H. Wang, R.P.H. Chang, Phys. Rev. Lett. 82, 2278 (1999)

    Article  ADS  Google Scholar 

  13. H. Yan, R. He, J.C. Johnson, M. Law, R.J. Saykally, P. Yang, J. Am. Chem. Soc. 125, 4728 (2003)

    Article  Google Scholar 

  14. D.J. Gargas, M.E. Toimil-Molares, P. Yang, J. Am. Chem. Soc. 131, 2125 (2009)

    Article  Google Scholar 

  15. J. Fallert, R.J.B. Dietz, H. Zhou, J. Sartor, C. Klingshirn, H. Kalt, Phys. Status Solidi C 2, 449 (2009)

    Article  ADS  Google Scholar 

  16. L.K. Vugt, S. Ruhle, D. Vanmaekelbergh, Nano Lett. 6, 2707 (2006)

    Article  ADS  Google Scholar 

  17. Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, Z. Wang, Nano Lett. 10, 3414 (2010)

    Article  ADS  Google Scholar 

  18. S. Zhang, Y. Shen, H. Fang, S. Xu, J. Song, Z. Wang, J. Mater. Chem. 20, 10606 (2010)

    Article  Google Scholar 

  19. T. Saito, M. Kumagai, H. Wang, T. Tawara, T. Nishida, T. Akasaka, N. Kobyashi, Appl. Phys. Lett. 82, 4426 (2003)

    Article  ADS  Google Scholar 

  20. A. Das, J. Heo, M. Jankowski, W. Guo, L. Zhang, H. Deng, P. Bhattacharya, Phys. Rev. Lett. 107, 066405 (2011)

    Article  ADS  Google Scholar 

  21. J. Carroll, J. Whiteaway, D. Plumb, Distributed Feedback Semiconductor Lasers (Redwood Books, Trowbridge, 1998)

    Book  Google Scholar 

  22. D. O’Carroll, I. Lieberwirth, G. Redmond, Nat. Nanotechnol. 2, 180 (2007)

    Article  ADS  Google Scholar 

  23. A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  24. K. Bando, T. Sawabe, K. Asaka, Y. Masumoto, J. Lumin. 108, 385 (2004)

    Article  Google Scholar 

  25. V.V. Ursaki, V.V. Zalamai, I.M. Tiginyanu, A. Burlacu, E.V. Rusu, C. Klingshirn, Appl. Phys. Lett. 95, 171101 (2009)

    Article  ADS  Google Scholar 

  26. S. Ruhle, L.K. van Vugt, H.Y. Li, N.A. Keizer, L. Kuipers, D. Vanmaekelbergh, Nano Lett. 8, 119 (2008)

    Article  ADS  Google Scholar 

  27. L. Chen, E. Towe, Appl. Phys. Lett. 89, 053125 (2006)

    Article  ADS  Google Scholar 

  28. J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107, 8816 (2003)

    Article  Google Scholar 

  29. V.S. Park, J.R. Schneider, J. Appl. Phys. 39, 3049 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF (Grant No. ECCS-0900978). The authors thank Krassimir N. Bozhilov for assistance in TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, J., Chu, S., Huang, J. et al. Use of distributed Bragg reflectors to enhance Fabry–Pérot lasing in vertically aligned ZnO nanowires. Appl. Phys. A 110, 23–28 (2013). https://doi.org/10.1007/s00339-012-7330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7330-7

Keywords

Navigation