Skip to main content
Log in

Nonlinear sharpening of holographically processed sub-microstructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wavelength dispersion of a computer-generated hologram causes spatial broadening of the focal spot in holographic femtosecond laser processing. From the paraxial approximation, we theoretically derived that the spatial broadening is proportional to only the diffraction position, defined as the distance from the optical axis. We performed experiments under the large-dispersion condition to analyze the influence of the diffraction position on the processed structure. In the processing experiment, a high-numerical-aperture lens and a laser energy near the threshold energy were used to fabricate sub-microstructures. We found a nonlinear dependence of the broadening of the processed structures on the diffraction position, and the degree of broadening was much smaller than the predicted value because of the nonlinear properties of the laser processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Du, X. Liu, G. Korn, G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994)

    Article  ADS  Google Scholar 

  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm. Appl. Phys. Lett. 65, 1850–1852 (1994)

    Article  ADS  Google Scholar 

  3. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  4. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  5. E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Mazur, Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996)

    Article  ADS  Google Scholar 

  6. K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano, H. Hosono, Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Appl. Phys. B 71, 119–121 (2000)

    Article  ADS  Google Scholar 

  7. T. Kondo, S. Matsuo, S. Juodkazis, H. Misawa, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Appl. Phys. Lett. 79, 725–727 (2001)

    Article  ADS  Google Scholar 

  8. Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses. Appl. Phys. Lett. 80, 1508–1510 (2002)

    Article  ADS  Google Scholar 

  9. K. Venkatakrishnan, N.R. Sivakumar, C.W. Hee, B. Tan, W.L. Liang, G.K. Gan, Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser. Appl. Phys. A 77, 959–963 (2003)

    Article  ADS  Google Scholar 

  10. Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn. J. Appl. Phys. 42, L1452–L1454 (2003)

    Article  ADS  Google Scholar 

  11. S. Matsuo, S. Juodkazis, H. Misawa, Femtosecond laser microfabrication of periodic structures using a microlens array. Appl. Phys. A 80, 683–685 (2005)

    Article  ADS  Google Scholar 

  12. J. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, S. Kawata, Multi-spot parallel processing for micronanofabrication. Appl. Phys. Lett. 86, 044102 (2005)

    Article  ADS  Google Scholar 

  13. J. Amako, K. Nagasaka, N. Kazuhiro, Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. Opt. Lett. 27, 969–971 (2002)

    Article  ADS  Google Scholar 

  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, K. Hirao, Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt. Express 12, 1908–1915 (2004)

    Article  ADS  Google Scholar 

  15. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl. Phys. Lett. 87, 031101 (2005)

    Article  ADS  Google Scholar 

  16. N. Sanner, N. Huot, E. Audouard, C. Larat, J.P. Huignard, B. Loiseaux, Programmable focal spot shaping of amplified femtosecond laser pulses. Opt. Lett. 30, 1479–1481 (2005)

    Article  ADS  Google Scholar 

  17. S. Hasegawa, Y. Hayasaki, N. Nishida, Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt. Lett. 31, 1705–1707 (2006)

    Article  ADS  Google Scholar 

  18. G.J. Lee, Y.P. Lee, H. Cheong, C.S. Yoon, C.H. Oh, E.K. Kim, Y.-D. Son, J. Jang, Femtosecond-laser surface structuring of amorphous and crystalline silicon. J. Korean Phys. Soc. 48, 1268–1272 (2006)

    Google Scholar 

  19. S. Hasegawa, Y. Hayasaki, Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator. Opt. Rev. 14, 208–213 (2007)

    Article  Google Scholar 

  20. H. Takahashi, S. Hasegawa, Y. Hayasaki, Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. Appl. Opt. 46, 5917–5923 (2007)

    Article  ADS  Google Scholar 

  21. K. Chaen, H. Takahashi, S. Hasegawa, Y. Hayasaki, Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt. Commun. 280, 165–172 (2007)

    Article  ADS  Google Scholar 

  22. M. Yamaji, H. Kawashima, J. Suzuki, S. Tanaka, Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl. Phys. Lett. 93, 041116 (2008)

    Article  ADS  Google Scholar 

  23. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. Edwardson, M. Padgett, G. Dearden, K. Watkins, High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl. Surf. Sci. 255, 2284–2289 (2008)

    Article  ADS  Google Scholar 

  24. S. Hasegawa, Y. Hayasaki, Adaptive optimization of hologram in holographic femtosecond laser processing system. Opt. Lett. 34, 22–24 (2009)

    Article  Google Scholar 

  25. S. Hasegawa, Y. Hayasaki, Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses. Jpn. J. Appl. Phys. 48, 09LE03 (2009)

    Article  Google Scholar 

  26. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, K. Watkins, Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl. Surf. Sci. 255, 6582–6588 (2009)

    Article  ADS  Google Scholar 

  27. P.S. Salter, M.J. Booth, Addressable microlens array for parallel laser microfabrication. Opt. Lett. 36, 2302–2304 (2011)

    Article  ADS  Google Scholar 

  28. A. Jesacher, M.J. Booth, Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt. Express 18, 21090–21099 (2010)

    Article  ADS  Google Scholar 

  29. S. Hasegawa, Y. Hayasaki, Second harmonic optimization of computer-generated hologram. Opt. Lett. 36, 2943–2945 (2011)

    Article  ADS  Google Scholar 

  30. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides. Opt. Lett. 36, 1065–1067 (2011)

    Article  ADS  Google Scholar 

  31. Y. Hayasaki, M. Nishitani, H. Takahashi, H. Yamamoto, A. Takita, D. Suzuki, S. Hasegawa, Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl. Phys. A 107, 357–362 (2012)

    Article  ADS  Google Scholar 

  32. L. Kelemen, S. Valkai, P. Ormos, Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt. Express 15, 14488–14497 (2007)

    Article  ADS  Google Scholar 

  33. H. Takahashi, S. Hasegawa, A. Takita, Y. Hayasaki, Sparse-exposure technique in holographic two-photon polymerization. Opt. Express 16, 16592–16599 (2008)

    Article  Google Scholar 

  34. N.J. Jenness, R.T. Hill, A. Hucknall, A. Chilkoti, R.L. Clark, A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express 18, 11754–11762 (2010)

    Article  ADS  Google Scholar 

  35. K. Obata, J. Koch, U. Hinze, B.N. Chichkov, Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18, 17193–17200 (2010)

    Article  ADS  Google Scholar 

  36. S.D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R.J. Narayan, B.N. Chichkov, Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2, 3167–3178 (2011)

    Article  Google Scholar 

  37. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Parallel drawing of multiple bent optical waveguides by using a spatial light modulator. Jpn. J. Appl. Phys. 48, 126507–126511 (2009)

    Article  ADS  Google Scholar 

  38. M. Sakakura, T. Sawano, Y. Shimotsuma, K. Miura, K. Hirao, Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam. Opt. Express 18, 12136–12143 (2010)

    Article  ADS  Google Scholar 

  39. D. Liu, Z. Kuang, W. Perrie, P.J. Scully, A. Baum, S.P. Edwardson, E. Fearon, G. Dearden, K.G. Watkins, High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl. Phys. B 101, 817–823 (2010)

    Article  ADS  Google Scholar 

  40. H. Imamoto, S. Kanehira, X. Wang, K. Kametani, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser. Opt. Lett. 36, 1176–1178 (2011)

    Article  ADS  Google Scholar 

  41. M. Antkowiak, M.L. Torres-Mapa, F. Gunn-Moore, K. Dholakia, Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. J. Biophotonics 3, 696–705 (2010)

    Article  Google Scholar 

  42. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, P. Andrés, High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. Opt. Lett. 31, 2631–2633 (2006)

    Article  ADS  Google Scholar 

  43. G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, P. Andrés, Dispersion-compensated beam-splitting of femtosecond light pulses: wave optics analysis. Opt. Express 15, 278–288 (2007)

    Article  ADS  Google Scholar 

  44. L. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, P. Andrés, Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers. Appl. Phys. Lett. 94, 011104 (2009)

    Article  ADS  Google Scholar 

  45. G. Zhu, J. van Howe, M. Durst, W. Zipfel, C. Xu, Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005)

    Article  ADS  Google Scholar 

  46. D. Oron, E. Tal, Y. Silberberg, Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005)

    Article  ADS  Google Scholar 

  47. E. Tal, D. Oron, Y. Silberberg, Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing. Opt. Lett. 30, 1686–1688 (2005)

    Article  ADS  Google Scholar 

  48. D. Oron, Y. Silberberg, Spatiotemporal coherent control using shaped, temporally focused pulses. Opt. Express 13, 9903–9908 (2005)

    Article  ADS  Google Scholar 

  49. M.E. Durst, G. Zhu, C. Xu, Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 14, 12243–12254 (2006)

    Article  ADS  Google Scholar 

  50. K. Kimura, S. Hasegawa, Y. Hayasaki, Diffractive spatiotemporal lens with wavelength dispersion compensation. Opt. Lett. 35, 139–141 (2010)

    Article  Google Scholar 

  51. J. Bengtsson, Kinoform design with an optimal-rotation-angle method. Appl. Opt. 33, 6879–6884 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hayasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, S., Hayasaki, Y. Nonlinear sharpening of holographically processed sub-microstructures. Appl. Phys. A 111, 929–934 (2013). https://doi.org/10.1007/s00339-012-7317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7317-4

Keywords

Navigation