Rapid thermal oxygen annealing formation of nickel silicide nanocrystals for nonvolatile memory

Abstract

Discrete NiSi nanocrystals were synthesized by rapid thermal oxygen annealing of very thin Si/Ni/Si films on a SiO2 tunneling layer. They were used to fabricate metal–oxide–semiconductor capacitor memory. Electrical properties of the memory device such as programming, erasing and retention were characterized and good performance was achieved.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    J.A. Hutchby, G.I. Bourianoff, V.V. Zhirnov, J.E. Brewer, IEEE Circuits Devices 47 (2005)

  2. 2.

    Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011)

    ADS  Article  Google Scholar 

  3. 3.

    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, K. Chan, Appl. Phys. Lett. 68, 1377 (1996)

    ADS  Article  Google Scholar 

  4. 4.

    S. Jacob, B. De Salvo, L. Perniola, G. Festes, S. Bodnar, R. Coppard, J.F. Thiery, T. Pate-Cazal, C. Bongiorno, S. Lombardo, J. Dufourcq, E. Jalaguier, T. Pedron, F. Boulanger, S. Deleonibus, Solid-State Electron. 52, 1452 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J.-C. Shim, H. Kurino, M. Koyanagi, in IEEE IEDM (2003), p. 553

    Google Scholar 

  6. 6.

    J.J. Lee, Y. Harada, J.G.W. Pyun, D.L. Kwong, Appl. Phys. Lett. 86, 103505 (2005)

    ADS  Article  Google Scholar 

  7. 7.

    B. Li, J.J. Ren, J.L. Liu, Appl. Phys. Lett. 96, 172104 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    G.R. Lina, H.C. Kuo, H.S. Lin, C.C. Kao, Appl. Phys. Lett. 89, 073108 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    H.M. Zhou, J.A. Dorman, Y.C. Perng, S. Gachot, J.G. Zheng, J.P. Chang, J.L. Liu, Appl. Phys. Lett. 98, 192107 (2011)

    ADS  Article  Google Scholar 

  10. 10.

    Q. Wan, C.L. Lin, W.L. Liu, T.H. Wang, Appl. Phys. Lett. 82, 4708 (2003)

    ADS  Article  Google Scholar 

  11. 11.

    Z.T. Liu, C. Lee, V. Narayanan, G. Pei, E.C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    C.H. Lee, J. Meteer, V. Narayanan, E.C. Kan, J. Electron. Mater. 34, 1 (2005)

    ADS  Article  Google Scholar 

  13. 13.

    J.J. Lee, D.L. Kwong, IEEE Trans. Electron Devices 52, 507 (2005)

    ADS  Article  Google Scholar 

  14. 14.

    T.C. Chang, P.T. Liu, S.T. Yan, S.M. Sze, Electrochem. Solid-State Lett. 8(3), G71 (2005)

    Article  Google Scholar 

  15. 15.

    S. Choi, S.S. Kim, M. Chang, H.S. Hwang, S.H. Jeon, C.W. Kim, Appl. Phys. Lett. 86, 123110 (2005)

    ADS  Article  Google Scholar 

  16. 16.

    J.H. Chen, W.J. Yoo, D.S.H. Chan, L.J. Tang, Appl. Phys. Lett. 86, 073114 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    Y.H. Lin, C.H. Chien, C.T. Lin, C.Y. Chang, T.F. Lei, IEEE Electron Device Lett. 26, 154 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    S.Y. Huang, K. Arai, K. Usami, S. Oda, IEEE Trans. Nanotechnol. 3, 210 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    H.M. Zhou, B. Li, Z. Yang, N. Zhan, D. Yan, R.K. Lake, J.L. Liu, IEEE Trans. Nanotechnol. 10, 499 (2011)

    ADS  Article  Google Scholar 

  20. 20.

    C.C. Lin, T.C. Chang, C.H. Tu, W.R. Chen, L.W. Feng, S.M. Sze, T.Y. Tseng, S.C. Chen, J.Y. Lin, J. Electrochem. Soc. 156, H276 (2009)

    Article  Google Scholar 

  21. 21.

    D.F. Wilson, O.B. Cavin, Scr. Metall. Mater. 26, 85 (1992)

    Article  Google Scholar 

  22. 22.

    J.F. Liu, H.B. Chen, J.Y. Feng, J. Cryst. Growth 220, 488 (2000)

    ADS  Article  Google Scholar 

  23. 23.

    M.L. Ostraata, J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan, H.A. Atwater, Appl. Phys. Lett. 79, 433 (2001)

    ADS  Article  Google Scholar 

  24. 24.

    M. Chigane, M. Ishikawa, J. Chem. Soc. Faraday Trans. 94, 3665 (1998)

    Article  Google Scholar 

  25. 25.

    Y. Cao, L. Nyborg, U. Jelvestam, Surf. Interface Anal. 41, 471 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and program support of the DARPA/Defense Microelectronics Activity (DMEA) under agreement number H94003-10-2-1003 and the National Science Foundation (DMR-0807232). The cross-sectional TEM specimen was prepared by using a FEI Quanta 3D dual beam system in Calit2 Microscopy Center and TEM diffraction-contrast imaging was performed on a Philips CM-20 TEM in Materials Characterization Center at UCI. The HRTEM image was recorded in a FEI Titan 80-300 TEM. Dr. S.J. Xie is acknowledged for her assistance in HRTEM imaging and Mr. B Myers for his FIB recipe for TEM specimen preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianlin Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, H., Li, Z., Zheng, JG. et al. Rapid thermal oxygen annealing formation of nickel silicide nanocrystals for nonvolatile memory. Appl. Phys. A 109, 535–538 (2012). https://doi.org/10.1007/s00339-012-7299-2

Download citation

Keywords

  • Rapid Thermal Annealing
  • Memory Window
  • Floating Gate
  • Vapor Solid Solid
  • Rapid Thermal Annealing Process